ARL-TR-7707 e JUNE 2016

ARL

US Army Research Laboratory

Shape Factor Modeling and Simulation

by Richard Saucier

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the

Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement
or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TR-7707 e JUNE 2016

ARL

US Army Research Laboratory

Shape Factor Modeling and Simulation

by Richard Saucier
Survivability/Lethality Analysis Directorate, ARL

Approved for public release; distribution is unlimited.

Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
June 2016

2. REPORT TYPE
Final

3. DATES COVERED (From - To)
November 2015-March 2016

4. TITLE AND SUBTITLE
Shape Factor Modeling and Simulation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER
AHS0

6. AUTHOR(S)
Richard Saucier

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army Research Laboratory

ATTN: RDRL-SLB-S
Aberdeen Proving Ground, MD 21005-5068

8. PERFORMING ORGANIZATION REPORT
NUMBER

ARL-TR-7707

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The dimensionless shape factor, which relates the projected area of a fragment to its mass per unit density, plays a fundamental
role in ballistic penetration. Explicit analytical formulas are given for the shape factor distributions of some common shapes with
random orientations. It is straightforward to simulate these shape factor distributions with computer code, and we verify that the
simulations match the plots from the analytical formulas. However, none of the simple common shapes provides an adequate
simulation model for natural fragments. We show that natural fragment data can be fit with a lognormal distribution, which then
provides a simulation model for Monte Carlo sampling. Laser scans of fragments can also be used to compute the fragment shape
factor from any viewpoint; various methods of achieving a uniform spherical distribution are described. Finally, we show that it is
possible to realize each fragment as either a yawed cylinder or a cuboid with a pitch, yaw, and roll. Thus, we have a procedure for
generating all the input variables required to run THOR or FATEPEN with natural fragments.

15. SUBJECT TERMS
shape factor, artillery fragments, spall fragments, FATEPEN, THOR, STL file format, icosahedron gage, uniform spherical

17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
16. SECURITY CLASSIFICATION OF: . .
OF OF Richard Saucier
ABSTRACT PAGES
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code)
Unclassified Unclassified Unclassified uUu 100 410-278-6721

i

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. 7Z39.18

Contents

List of Figures

List of Tables

List of Listings
Acknowledgments
1. Introduction

2. Shape Factor Distributions for 5 Convex Solids

2.1 Cube
2.2 Cuboid
2.3 Cylinder

2.4 Tetrahedron
2.5 Ellipsoid

3. Shape Factor Distributions for Natural Fragments

3.1 Platonic Solids and Uniform Viewing from All Viewpoints

3.2 Natural Fragments from Artillery Rounds

3.3 Natural Fragments from Spall

3.4 Shape Factor Computation from Laser-Scanned Fragments
3.4.1 Area Contribution from Each Facet
3.4.2 Volume Contribution from Each Facet
3.4.3 Total Surface Area and Total Volume

3.4.4 Projected Area

4. Shape Factor Modeling
4.1 Cylinder
4.2 Cuboid

5. Conclusions and Recommendations

Approved for public release; distribution is unlimited.

1l

vii

viii

29
30
32

34

6. References 36

Appendix A. Analytical Shape Factor Formulas for 5 Convex Solids 39

Appendix B. Uniform Sampling over the Unit Sphere 67
Appendix C. Some Properties of the Lognormal Distribution 77
List of Symbols, Abbreviations, and Acronyms 87
Distribution List 88

Approved for public release; distribution is unlimited.

v

List of Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.

AN N R W N~

9

10
11
12
13

14

15
16

A-1
A-2
A-3
A4
A-5

A-6
A-7
B-1
B-2

Contour plot of limit velocity as a function of shape factor and mass. ...4

Shape factor histograms generated by cubesim.cpp. 6
Shape factor histograms generated by rppsim.cpp.covvvveneneenenennnn. 7
Shape factor histograms generated by cylsim.cpp..........cccevviveininen.... 8
Shape factor histograms generated by tetrasim.cpp............c.coeeuenen... 9
Shape factor histograms generated by ellipsoidsim.cpp for 3/2/1

CIIPSOIA. .ot 10
Shape factor histograms generated by ellipsoidsim.cpp for 8/2/1

CHIPSOIA. .ot 11
Raytraced image made with BRL-CAD of laser-scanned natural

Fragment. ..o 12
The 5 Platonic solids.o.ouiuiiii 12
Mean shape factor of artillery fragments as a function of mass. 15

Shape factor histograms for artillery fragments compared to lognormal.15
Shape factor histograms for spall fragments compared to lognormal. .. 17

Laser-scanned natural fragment showing mesh of triangles covering the
SUMTACE. L.iviiiii i 18

Shape factor histograms generated by STL description of a single
fragment. ..o 25

Shape factor histograms generated by STL descriptions of 15 fragments.25

Shape factor histograms for 15 fragments accounting for hidden

SULTACES. ettt 26
Shape factor distribution for a randomly oriented cube. 41
Shape factor distribution for a randomly oriented cuboid. 46
Shape factors of a cylinder as a function of L/Dccocoeeeienie. 52
Shape factor distribution for a randomly oriented cylinder................. 56

Fast generation of randomly oriented cylinder shape factor compared to
EXACE PLOL. ettt 57

Shape factor distribution for a randomly oriented regular tetrahedron. . 60

Shape factor distribution for a randomly oriented ellipsoid. 62
Sampling on the circumscribed cylinder.c.coco. 68
Uniform random sampling over the unit sphere............................. 73

Approved for public release; distribution is unlimited.

Fig. B-3 Stratified random sampling over the unit sphere 74

Fig. B-4 Spiral distribution over the unit sphere..............c.cooooiiiiiiiiinnn.. 75
Fig. B-5 Maximal avoidance sampling over the unit sphere 76
Fig. C-1 Mass per unit area histogram compared to theoretical distribution...... 85

Approved for public release; distribution is unlimited.

vi

List of Tables

Table 1 ~ Shape factors of some common shapes and orientations 3
Table 2 Properties of the 5 Platonic solids...........c.coeveiiiiiiiiiinnnnnnn.. 13
Table 3 Sequence of viewing angles in Icosahedron Gage 14
Table 4 Comparison of lognormal fit to artillery data 16
Table 5 Comparison of lognormal fit to spall datacoooel. 17
Table C-1 Properties of the lognormal distributionc.oooeiiiiinn.. 78

Approved for public release; distribution is unlimited.

Vil

List of Listings

Listing 1 o810 TR 133 e o) o 6
LiSting 2 IPPSIIMLCPP «evvveeetettittttttitttttttt ettt eeeeeeeeeeeeeeeeen. 7
Listing 3 CYISTMLCPP « ettt 8
Listing 4 L8 1044 o3 0] o 1 9
Listing 5 elliPSOIASIMLCPP +.veiiiie ettt 10
Listing 6 10gNOTMALCPP . .. vveeeeeeee e 18
Listing 7 SUEOTMAL.CPP .+ vttt 18
Listing 8 tetrahedron.stla............o o 19
Listing 9 SEL AL CPD e e 19
Listing 10 StLD.CPP weveeeii e 23
Listing 11 Stlar€a.cppueeeietiiii e 26
Listing 12 SE-TCC.CPP -ttt 32
Listing 13 SE-rPP.CPP «vveee et 33
Listing A-1 CUDC.CPP « vt 40
LISUNG A-2 TPP-CPP + et vvnnaeee ettt ettt ettt 47
Listing A-3 @l@0.CPP +evvvriiiiiiiii e 56
Listing A-4 tetrahedron.Cppcovviiiiiiiiiiiiiiiiiiiiiii e, 59
Listing A-5 ellipSoid.CPP «evvvvriiiiiiiiiii e 62
LiSting A-6 1l CPD « ottt 63
| 80T Nl T o 64
T 80T N B (o2 o) o 65
Listing B-1 uniform.cppcooomumiiiiii 69
Listing B-2 Strat.CPP «evvvee ettt ettt 69
Listing B-3 SPIral.Cpp «cccvvviiiiiiiiiiiii e 71
Listing B-4 avoidancCe.cppovvurriiiieeet i 71
Listing C-1 MULCPP +evvitieee ettt ettt et e et eeaeaas 84

Approved for public release; distribution is unlimited.

viil

Acknowledgments

I would like to thank John Abell for reviewing this report, suggesting a number
of improvements, and pointing out a number of errors. I also would like to thank
technical editor Jessica Schultheis for her careful and thorough editing. Of course, I

accept full responsibility for any errors that may remain.

Approved for public release; distribution is unlimited.

1X

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

1. Introduction

Fragment shape factor v is defined by the equation

m\ 2/3
Ap=1 (—) ; (1
P

where A, is presented area, m is mass, and p is material density. The presented (or

projected) area is the area that would be projected in silhouette on a screen from a
distant light source, and could very well change with orientation. The mass divided
by the density is the fragment’s volume. We raise it to the two-thirds power so that
it has the same dimensions as the presented area (square meters in SI units). This
makes the shape factor v dimensionless, which means that it is independent of any
units. More importantly, the shape factor as defined in Eq. 1 is also independent of
the fragment’s density, so that the shape factor of a steel cube has the same value as
a tungsten cube or an aluminum cube. It is also a specific quantity, independent of
the volume of the fragment. This will prove useful later when we compare shape

factors for different masses.

It is important to recognize that there are at least 3 other shape factor definitions in

common use in the ballistics community:

e Shape factor s defined by A, = s m?/3, where A, is in units of inch?, m is

in units of grains, and s is in units of inch?/gr?/3.

e Shape factor K defined by A4, = KW?/3, where A, is in units of ft2, W is

in units of pounds, and K is in units of ft? gr'/3/Ib.

e Shape factor k defined by A, = (m/k)?/3, where A, is in units of inch?, m

is in units of grains, and k is in units of gr/inch?.

Notice that these are all dimensional shape factors. Using the conversion factors 1
inch=2.54 cm, 1 1b="7000 gr, and 1 g = 15.4324 ¢r,

e the conversion between vy and s is s = 0.025%,
p

7000 ~

e the conversion between 7y and K is K = 0.025mm,

Approved for public release; distribution is unlimited.

e and the conversion between v and £k is & = 252.9?%2,
f)/

where p is the material density in units of g/cm?. For example, a steel cube (p = 7.83

g/cm?®) with a random orientation has a mean shape factor of

v =3/2,

s = 0.0095 inch?/gr?/3,

K = 0.4623 ft? gr'/3/lb, and

k = 1077.8 gr/inch?.

And a tungsten cube (p = 17.6 g/cm®) with a random orientation has a mean shape
factor of

v =3/2,

s = 0.0055 inch?/gr?/3,

K = 0.2694 ft*> gr'/?/lb, and

k = 2422.8 gr/inch?.

The dimensionless shape factor «y is much simpler and less error prone than the others
since it only depends upon the shape and orientation, but is completely independent

of material density.

Shape factors for some common shapes and orientations can be worked out from
the definition embodied in Eq. 1 and simple geometry. Some of these are listed in
Table 1.

Approved for public release; distribution is unlimited.

Table 1. Shape factors of some common shapes and orientations

Shape Orientation Shape Factor
Sphere All (3/2)%/3(m/4)Y/3 ~ 1.209
Cube Face Forward 1
Edge Forward V2~ 1.414
Corner Forward V3~ 1.732
Minimum 1
Maximum V3~ 1.732
Mean 3/2
Median 7V/3/8 ~ 1.516
3/2/1 Cuboid Largest Face Forward 1.817
Intermediate Face Forward 0.909
Smallest Face Forward 0.606
Minimum 0.606
Maximum 2.120
Mean 5.5/6%/% ~ 1.666
Median 1.745

L/D=1 Cylinder

Face Forward

Side Forward

(m/4)'/? =~ 0.923
(m/4)%/% =~ 1.175

Minimum (m/4)Y/?3 =~ 0.923
Maximum (m/4)72/3\/(7/4)2 +1 ~ 1.494
Mean (3/2)(w/4)"/? ~ 1.384
Median 1.416

Regular Tetrahedron Face/Corner Forward 1.801
Edge Forward 2.080
Minimum 1.471
Maximum 2.080
Mean 1.801
Median 1.775

3/2/1 Ellipsoid Minimum 0.732
Mode 1.098
Maximum 2.197
Mean 1.424
Median 1.368

Shape factor plays a fundamental role in ballistic penetration. Two simple examples

will serve to illustrate this.*

e A 725-gr steel cylinder with a shape factor v = 0.72 (L /D = 1.4506), when

striking a 1/4-inch mild steel plate, has a limit velocity v;, = 1162 {/s. If

*All these results were obtained by running the FATEPEN model.!?

Approved for public release; distribution is unlimited.

we reduce the shape factor by 50% (v = 0.36 and L/D = 4.1029) without
changing the mass, then the limit velocity becomes vy, = 943 /s, a 19%
reduction in limit velocity. On the other hand, if we keep the same shape factor
of 0.72, then the mass would have to increase to 1385 gr, a 91% mass increase,
in order to achieve the same reduction in limit velocity.

A 25-g steel cylinder with a shape factor v = 0.86 (L/D = 1.11), when
striking a 16-mm face-hardened steel plate, has a limit velocity v, = 3621
f/s. The same mass with a shape factor v = 0.43 (/D = 3.14) has a limit
velocity vy, = 3263 f/s, a 10% reduction in limit velocity. If we leave the shape
factor at 0.43, then the mass would have to be increased to 32 g to get a limit

velocity of 3263 f/s, which represents a 28% increase in mass.

These examples illustrate that a decrease in shape factor is comparable to an increase

in striking mass. In the first case, a 50% reduction in shape factor was comparable

toa9

1% increase in mass, and in the second, a 50% reduction in shape factor was

comparable to a 28% increase in mass. So the shape factor can be more or less

sensitive than the mass in influencing the limit velocity. But the important point is

that to accurately determine penetration, we need to know the shape factor of the

penetrator, much like the mass. This is further illustrated in Fig. 1.

Mass (grains)

— T T T T T T T T T T T T

10000

. Limit Velocity (f/s)
3500

600 3000

2500

2000

400 1500

1000

200

Shape Factor (-)

Fig. 1. Contour plot of limit velocity as a function of shape factor and mass for steel fragments
impacting a 1/4-inch mild steel plate using FATEPEN

Approved for public release; distribution is unlimited.

Another point worth emphasizing is that penetration depends upon the instantaneous
shape factor at impact, not the average value over all orientations. Unless the frag-
ment is tumbling while it is penetrating—which is highly unlikely in metal—we
need to use the shape factor at impact. One may argue that the THOR penetration
model® makes use of the average presented area, but a moment’s reflection should
convince us that it is a mistake to use the average value. Consider, for example, a
long thin cylinder. In face-forward orientation, it is a very effective penetrator—not
so in side-forward orientation. If we average over all orientations, we may find that
the average value does not perforate. It would be a mistake to conclude, therefore,
that there is no perforation for any orientation—an example of averaging too soon.
Of course, it is not necessarily easy to measure the impact presented area. For convex
solids, Cauchy’s theorem tells us that the average presented area of a convex solid is
one-fourth the total surface area. This allows us to compute the average presented
area very easily from the total surface area and may have been the reason why

average shape factor was used in the THOR equations.

2. Shape Factor Distributions for 5 Convex Solids

Now let us consider the 5 shapes in Table 1 that depend upon orientation (i.e.,
excluding the sphere), and let us consider a random viewpoint that is uniformly
distributed over a sphere. We can imagine the solid fixed at the origin while we
take random viewpoints on a sphere enclosing the solid, and from each viewpoint
we compute the projected area on a distant screen perpendicular to that viewpoint.
Analytical formulas for the projected area probability density function (PDF) and
cumulative distribution function (CDF) are known for each of these shapes and are
given in Appendix A, while a variety of methods of sampling over the unit sphere
are described in Appendix B. Recall that the PDF is simply the derivative of the
CDF, and the CDF always ranges from O to 1, which means that the area under the
full range of the PDF must equal 1.

Some of the formulas in Appendix A are in terms of the projected area. To convert
from the projected area distribution to the shape factor distribution, we make use of

Eq. 1 and the chain rule to get

_dF _ dF a4,

o _1/2/3
0 =G = g gt = V), @

where f is the PDF, F'is the CDF, and V is the fragment volume. So we see that it is

Approved for public release; distribution is unlimited.

Lo e N N N N

easy to convert a projected area distribution to a shape factor distribution by simple

scaling.

Sample plots of the PDF and CDF for each of the 5 shapes are shown in Subsections
2.1-2.5. In each case we also show histograms that have been generated with the

listed simulation code.

2.1 Cube

The shape factor distribution from a randomly oriented cube can be simulated with

the code in Listing 1.

Listing 1. cubesim.cpp

// cubesim.cpp: simulate shape factor distribution of a cube

#include "Random.h"
#include <iostream>
#include <cstdlib>
#include <cmath>

int main(int argc, charx argv[]) {

int N = 1000; // default number of samples or specify on command line
if (argc == 2) N = atoi(argv[1l]); // number of samples

rng: :Random rng;
double x, y, z, sf;
for (int i =0; i < N; i++) {

rng.spherical_avoidance(x, y, z);
sf = fabs(x) + fabs(y) + fabs(z);
std::cout << sf << std::endl;

}

return EXIT_SUCCESS;

The simulated shape factor distribution is compared to the analytical formulas in
Fig. 2.

25[] 10l i
/
/
c /
c S /
S 20r] S 08f i .
B E 1
e I /
5
< 5
2 15F 1 =S 061 4
2 2
[=
a 2
2 1.0t 1 % 0.4} 1
5 B
g g
& o5l] £ 02l]
‘ H)
0.0 il ‘H 0.0t
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Shape Factor Shape Factor

Fig. 2. Histograms of shape factor PDF and CDF for a randomly oriented cube compared to
analytical formulas, Eqs. A-1 and A-2 (black curves)

Approved for public release; distribution is unlimited.

® N LR W —

2.2 Cuboid

The shape factor distribution from a randomly oriented cuboid—also known as a

rectangular parallelepiped (RPP)—can be simulated with the code in Listing 2.

Listing 2. rppsim.cpp

//

rppsim.cpp

#include "Random.h"
#include <iostream>
#include <cstdlib>
#include <cmath>

int main(int argc, char* argv[]) {

int N = 1000; // default number of samples
// default is a cube with L =W =D =1, or specify dimensions on command line
double L=1., W=1., T=1.;

if (argc == 4) {

L = atof(argv[1l]);
atof(argv[2]);
atof(argv[3]);

=
o

else if (argc == 5) {
L = atof(argv([1l]);
W = atof(argv[2]);
T = atof(argv[3]);
N

= atoi(argv([4]); // number of samples
}
double a =W x T;
double b =T * L;
double c =L x W;
const double V. =L *x W * T;
const double F = pow(V, -2. / 3.); // factor to convert area to shape factor

rng::Random rng;
double x, y, z, ap, sf;

for ((int i = 0; 1 < N; i++) {

rng.spherical_avoidance(x, y, z);

ap = (ax fabs(x) +b x fabs(y) + c x fabs(z));
sf =ap x F;
std::cout << sf << std::endl;

}
return EXIT_SUCCESS;

The simulated shape factor distribution is compared to the analytical formulas in

Probability Density Function

Fig. 3.
T T
1.0 B
) c
o)
1.5F / 1 T 0.8r 1
S
w
c
kel
5 06 4
1.0 B 2
k]
a
o 041 .
=
0.5] %
£ o2f]
o
0.0t i i E| 0.0 | |
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Shape Factor Shape Factor

Fig. 3. Histograms of shape factor PDF and CDF for a randomly oriented L = 3, W = 2,
T = 1 cuboid compared to analytical formulas (black curve)

Approved for public release; distribution is unlimited.

® NN R W —

2.3 Cylinder

The shape factor distribution from a randomly oriented cylinder can be simulated

with the code in Listing 3.

Listing 3. cylsim.cpp

// cylsim.cpp: simulate shape factor distribution of a right circular cylinder

#include "Random.h"
#include <iostream>
#include <cstdlib>
#include <cmath>

int main(int argc, charx argv[]) {

int N
double 1_d

1000; // default number of samples or specify on command line
1.; // default is a L/D = 1 cylinder, or specify on command line

if (argc == 2)

N = atoi(argv[l]); // number of samples
else if (argc == 3) {

1.d = atof(argv[l]); // L/D

N atoi(argv([2]); // number of samples

}

const double C = pow(M_PI_4 x 1.d, -2./3.);
rng: :Random rng;

double th, ph, sf;

for ((int i = 0; 1 < N; i++) {

rng.spherical_avoidance(th, ph);
sf =Cx* (l.d = sin(th) + M_PI_4 % fabs(cos(th)));
std::cout << sf << std::endl;

}

return EXIT_SUCCESS;

The simulated shape factor distribution for an L/ D = 1 cylinder is compared to the

analytical formulas in Fig. 4.

© o N
T T T
L L L
=)

Probability Density Function
(<]
T
N
Cumulative Distribution Function

: 1 |

1.0 1.1 1.2 1.3 1.4 15 1.0 1.1 12 13 1.4 15
Shape Factor Shape Factor

Fig. 4. Histograms of shape factor PDF and CDF for a randomly oriented L/D = 1 cylinder
compared to analytical formulas. Notice the jump in the PDF at v = (7 /4)~2/3 ~ 1.175, as
predicted (see Appendix A).

Approved for public release; distribution is unlimited.

L I N N N N

2.4 Tetrahedron

The shape factor distribution from a randomly oriented regular tetrahedron can be

simulated with the code in Listing 4.

Listing 4. tetrasim.cpp

// tetrasim.cpp

#include "Vector.h"
#include "Random.h"
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <iomanip>
using namespace std;

int main(int argc, char* argv[]) {

const double A = 1. / sqrt(3.);

const va::Vector norm[4] = {
va::Vector(+A, -A, +A),
va::Vector(+A, +A, -A),
va::Vector(-A, +A, +A),
va::Vector(-A, -A, -A)

i

rng::Random rng;

double x, y, z, dotprod, ap, sf;

va::Vector u;

const double A_FACE = sqrt(3.) / 2.;

const double VOL = 1. / 3.;

int N = 1000; // default number of samples or specify on command line

if (argc == 2) N = atoi(argv[1l]);

cout << std::setprecision(6) << std::fixed;
for (int n = 0; n < N; n++) {

ap = 0.;
rng.spherical_avoidance(x, y, z);
u = va::Vector(x, y, z);

for (int i = 0; i < 4; i++) if ((dotprod = u * norm[i]) > 0.) ap += A_FACE x dotprod;
sf = ap * pow(VOL, -2./3.);
std::cout << sf << std::endl;

}

return EXIT_SUCCESS;

The simulated shape factor distribution for a regular tetrahedron is compared to the

analytical formulas in Fig. 5.

1.0F 7l
35 A
Nel] c -"
c S -
S 3.0f] S o8f pd 1
e S e
Z 25 t 1
> 2 06 4
2 5
2 o
5 20f 1 =
2
£ 15f] o 04F]
5 =
©
8 1.0f El 2
L E 02l]
0.5F] ©
0.0] 0.0 J
15 16 1.7 1.8 1.9 2.0 2.1 15 1.6 1.7 1.8 1.9 2.0 2.1

Shape Factor Shape Factor

Fig. 5. Histograms of shape factor PDF and CDF for a randomly oriented regular tetrahedron
compared to analytical formulas

Approved for public release; distribution is unlimited.

[SEN-J-CEN - NV RIS R

2.5 Ellipsoid

Listing 5 is an implementation of a simulation of the shape factor for an ellipsoid.

Listing 5. ellipsoidsim.cpp

// ellipsoidsim.cpp: Simulate the shape factor a randomly oriented ellipsoid

#include "Random.h"
#include <iostream>
#include <cstdlib>
#include <cmath>

inline double min(double a, double b, double c) { return std::min(std::min(a, b), c); }
inline double max(double a, double b, double c) { return std::max(std::max(a, b), c); }
inline double mid(double a, double b, double c) { return std::max(std::min(a, b), std::min(std::max(a, b), c));

}

int main(int argc, char* argv[]) {

unsigned int N = 1000; // default number of samples or specify as 4th argument on command line
double a =1., b=1., c = 1.; // default shape is a sphere
if (argc ==) { // or specify the 3 dimensions (in any order) on the commandline

a = atof(argv[l]);
b = atof(argv[2]);
¢ = atof(argv([3]);

}
else if (argc == 5) { // specify number of samples as 4th argument

a = atof(argv[1l]);

b = atof(argv[2]);

c = atof(argv[3]);

N = atoi(argv[4]);
}
const double A = min(a, b, c); // minimum value
const double B = mid(a, b, c); // intermediate value
const double C = max(a, b, ¢); // maximum value
const double V.= (4. / 3.) x MPI *x A xB x C; // ellipsoid volume
const double F = pow(V, -2. / 3.); // factor to convert area to shape factor

double x, y, z, X, Y, Z, ap, sf;
rng::Random rng;
for (unsigned int n = 0; n < N; n++) {

rng.spherical_avoidance(x, y, z);

X =B *x C % x;

Y=A=xCxy;

Z=Ax%*Bx* z;

ap = MPI = sqrt(X * X + Y x Y +Z % Z);
sf = ap * F;

std::cout << sf << std::endl;

}
return EXIT_SUCCESS;

Running this code for a 3/2/1 ellipsoid gives the results shown in Fig. 6.

1.0+ ol
1.4F] /_,—'
p
s T
S 1.2f] 5 08} o :
£ 2 >
8 S
5 w
£ 10}] =
2 2 06 b
2 o8l] 2
|73 =
o 17}
> 0 04+ B
206l 9 °
3 2
2 =
S 04f 1 E 02l]
& £
0.2f 1 ©
‘ 0.0 —
0.0 | \ \ . \ \ \ \ .
0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 0.8 1.0 1.2 1.4 1.6 1.8 2.0 22
Shape Factor Shape Factor

Fig. 6. Histograms of shape factor PDF and CDF for a randomly oriented ellipsoid witha = 1,
b = 2, ¢ = 3. The solid curve is a plot of the analytical formula.

Approved for public release; distribution is unlimited.

10

Running the code for a 8/2/1 ellipsoid gives the results shown in Fig. 7, just to show
how the side length ratios shift the plots. We will see later that the distribution from
a range of ellipsoid shapes begins to resemble the shape factor distribution from

natural fragments.

08
0.8

0.6+
06

0.4

Probability Density Function
Cumulative Distribution Function

0.4
0.2

o N |7 7

0.0 0.0

0.5 1.0 1.5 2.0 25 3.0 0.5 1.0 1.5 2.0 25 3.0
Shape Factor Shape Factor

Fig. 7. Histograms of shape factor PDF and CDF for a randomly oriented ellipsoid witha = 1,
b = 2, ¢ = 8. The solid curve is the theoretical distribution.

Given the semi-principal axes lengths a, b, ¢, of the ellipsoid, where a < b < ¢, the

projected areas are
4
Apin = mab, An =mac, Apax =7be, and V = gﬂ'CLbC. 3)

Or, if we know Apin, Am, Amax, Where Ay < An < Apax, then the lengths are

AminAm

WAmax

b o AminAmax o AmaxAm
) - 7TAm) c=

4 AminAmAmax
Vo= oy R max 4)
3 T

Therefore, if we are given the minimum, mode, and maximum shape factors, Vin,

a =

Y

7TAmin

and

Ym»> Ymax, along with the ellipsoid volume, then we can compute
Amin - Vminv2/37 Am - 7mv2/37 Amax - 'Ymaxv2/3> (5)
and use Eq. 4 to compute the ellipsoid dimensions.

Notice carefully the shape of the CDF curves for each of these shapes. We will see
that none of them resembles the CDF for a randomly oriented natural fragment,

Approved for public release; distribution is unlimited.

11

which indicates that there is no simple randomly oriented shape that will suffice as a
model for a natural fragment. What we will propose instead is to first characterize
the probability distribution of natural fragments and find a way to sample from this
distribution.

3. Shape Factor Distributions for Natural Fragments

Natural fragments resulting from artillery rounds have been collected in many
munition tests over the years. Unlike the shapes we have considered so far, these
fragments tend to have highly irregular shapes, an example of which is shown in
Fig. 8.

Fig. 8. Raytraced image made with BRL-CAD of SF1290, a laser-scanned natural fragment

We make the assumption that when a fragment impacts a target surface, it has a
random orientation and that each orientation is equally likely. Thus, we need a way
to sample over all directions in an unbiased manner. This was handled in the past by

making use of Platonic solids.

3.1 Platonic Solids and Uniform Viewing from All Viewpoints

Platonic solids are 3-dimensional (3D) regular, convex polyhedra, and there are only
5, as shown in Fig. 9.

vVEeoHO

Fig. 9. The 5 Platonic solids, from left to right, are tetrahedron, cube or hexahedron, octahe-
dron, dodecahedron, and icosahedron

Approved for public release; distribution is unlimited.

12

Regular in this context means that each face has the same area, which is the key
property for our purposes. Convex means that if we connect any point on the inside
with any point on the outside with a straight line, then it will cross the surface only

once. The number of faces and vertices of the solids are listed in Table 2.

Table 2. Properties of the 5 Platonic solids

Solid Number of Faces | Number of Vertices
Tetrahedron 4 4
Cube 6 8
Octahedron 8 6
Dodecahedron 12 20
Icosahedron 20 12

The dual of a Platonic solid is one in which the positions of the face centers and the
positions of vertices are switched—and is also a Platonic solid. The tetrahedron is
self-dual, and the hexahedron and octahedron are duals of one another, as are the
dodecahedron and the icosahedron. The vertices of a Platonic solid are equally spaced
about a circumscribed sphere, so that makes them ideal candidates for unbiased

projected area viewpoints.

The Icosahedron Gage*™® is a measuring instrument that uses as viewpoints the
vertices of both the icosahedron and the dodecahedron. This gives it 12 + 20 = 32
viewpoints, but for projected areas, half of these viewpoints are redundant, so that
leaves 16 viewpoints.” Table 3 lists the angles of the Icosahedron Gage.

*Notice, however, that when we do this, we no longer have equal spacing between viewpoints.
When a Platonic solid and its dual are combined, some points have 3 closest neighbor vertices while
other points have 5. So the rotational symmetry is spoiled. There is simply no way to distribute more
than 20 points over the unit sphere and maintain equal spacing between nearest neighbors. If it were
possible, then we would have a new Platonic solid, but it has been proven that there are only 5.

Approved for public release; distribution is unlimited.

13

Table 3. Sequence of viewing angles in Icosahedron Gage

Azimuthal Angle Elevation Angle
))

Position Platonic Solid

1 Icosahedron 0 90

2 Dodecahedron 0 52.6226
3 72 52.6226
4 144 52.6226
5 216 52.6226
6 288 52.6226
7 Icosahedron 324 26.5651
8 36 26.5651
9 108 26.5651
10 180 26.5651
11 252 26.5651
12 Dodecahedron 288 10.8123
13 0 10.8123
14 72 10.8123
15 144 10.8123
16 216 10.8123

Projected area measurements have been performed with early versions of the Icosa-
hedron Gage since the 1940s. The instrument that is used today is coupled to a

personal computer, which greatly automates the process.%’

3.2 Natural Fragments from Artillery Rounds

Close to 900 steel fragments from artillery rounds have been collected.>!! Each
fragment mass was measured along with 16 projected areas with an Icosahedron

Gage, which allows us to compute 16 shape factor values for each fragment.

If we plot the mean shape factor (averaged over the 16 individual measurements) as
a function of fragment mass, we find that there is essentially no correlation between

fragment mass and average shape factor, as shown in Fig. 10.

Approved for public release; distribution is unlimited.

14

S
(&)
]
L
§ e 122mm
B] 152mm
C | i
S 1.0le 1 e 155mm
s i]

05| 5

O_Oi P T S S S S SN S

0 10 20 30 40 50

Mass (grains)

Fig. 10. Fragments from 122-mm, 152-mm, and 155-mm artillery rounds. Mean shape factors
are computed from the 16 viewpoints of the Icosahedron Gage. The dashed line is a least-
squares fit to the data with a slope of very nearly zero (0.0018) indicating essentially no corre-
lation between average shape factor and mass.

Since there is essentially no correlation between shape factor and mass,” we are
justified in pooling all of the shape factors, which then gives us a sample size of
898 x 16 = 14, 368 shape factors.

So, although we started out with only 16 shape factors for each irregular fragment,
we are able to exploit the fact that shape factor is independent of mass to effectively
come up with over 14,000 shape factor measurements. We find that the resulting
shape factor distribution closely approximates a lognormal distribution, as shown in
Fig. 11.

o o o o e
w S 2 o ~
T T T T T

o
S
T

Probability Density Function
Cumulative Distribution Function

o

o
=)

Shape Factor Shape Factor

Fig. 11. Histogram of shape factor PDF and CDF for 898 artillery fragments. The black curve
is the maximum likelihood fit to the lognormal distribution with & = 0.597 and o = 0.341.

*For example, we might have expected that smaller fragments would be more compact than
larger fragments, but that is not what we see in the data.

Approved for public release; distribution is unlimited.

15

The lognormal PDF is given by

1 (Inz — p)?
— — 6
f(z) 5o P { 52 (6)
and the CDF is given by

F(z) = % (1 +erf {lnj_T;“D . %

The maximum likelihood estimation® of parameters gives © = 0.596514 and 0 =
0.340874. The geometric mean is 7, = e/ = 1.81578 and the geometric standard
deviation is o, = ¢’ = 1.40618.T The comparison between the lognormal fit and the

data is summarized in Table 4.

Table 4. Comparison of lognormal fit to artillery data

Statistic Lognormal Fit | Artillery Data
Median et =1.82 1.81
Mean ento’/2 =192 | 1.93
Mode eh= = 1.62 1.62

Whereas a normal distribution has the property that © 4+ x are equally likely, a
lognormal distribution has the property that zeh~o" and %e“‘”Q are equally likely,
for any value = # 0. See Appendix C for some more properties of the lognormal

distribution.

3.3 Natural Fragments from Spall

Spall fragments* were also collected in Celotex and subsequently measured for
mass and projected area with an Icosahedron Gage. In this case there were 250 spall
fragments, giving 250 x 16 = 4000 shape factors. These data are displayed in Fig. 12
and again compared to a lognormal fit.

*Maximum likelihood estimation is easy to perform for a lognormal distribution since i and o
are respectively the mean and the standard deviation of the logs of the data.
"The geometric mean and geometric standard deviation make it easy to summarize the distribution.

Thus, 68% is contained in [y,0, ", v40,4] and 95% in [y,0, %, 7407].
iSpall fragments are pieces of armor that are broken off during penetrator impact.

Approved for public release; distribution is unlimited.

16

=} =} o
w S ”
T T

Probability Density Function

o
N

Cumulative Distribution Function

o

o
o

Shape Factor Shape Factor

Fig. 12. Histogram of shape factor PDF and CDF for spall fragments. The black curve is a fit
to the lognormal distribution.

Maximum likelihood estimation gives = 0.456095 and 0 = 0.479386. The
geometric mean is v, = e = 1.5779 and the geometric standard deviation is
o4 = €7 = 1.61508. The comparison between the lognormal fit and the data is

summarized in Table 5.

Table 5. Comparison of lognormal fit to spall data

Statistic Lognormal Fit | Spall Data
Median et =1.58 1.50
Mean ettt /2 =177 | 179
Mode et =125 | 1.25

If we look back and compare the PDF for the simple shapes of cube, cuboid, cylinder,
tetrahedron, and ellipsoid (Figs. 1-6) to the lognormal, it is clear that none of these
shapes come close. Nor are we likely to find any simple shape that will reproduce
the distribution of shape factors from natural fragments by merely randomizing the
orientation. However, we have found that the lognormal distribution offers a lot of
promise of simulating the shape factor. It is not necessary that we have a specific
shape in order to simulate the shape factor; we only need to sample a lognormal
distribution each time we need a sample of the shape factor (for example, at impact

with a target).

Listing 6 is a simple program that will generate the lognormally distributed shape

factors.

Approved for public release; distribution is unlimited.

17

[e N N

T2 o®muons W —

Listing 6. lognormal.cpp

// lognormal.cpp

#include <iostream>
#include <cstdlib>
#include <cmath>
#include <chrono>
#include <random>

int main(void) {
// default values for the shape factor lognormal distribution from 122mm, 152mm and 155mm artillery
double mu = 0.590494; // these two parameters characterize the lognormal shape factor distribution
double sigma = 0.323433; // with mode = 1.63, median = 1.80 and mean = 1.90
unsigned int seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();

std::mt19937 rng(seed); // Mersenne Twister engine
std::lognormal_distribution<double> lognormal(mu, sigma); // lognormal shape factor distribution

const int N = 10000;
for (int i = 0; 1 < N; i++) std::cout << lognormal(rng) << std::endl;

return EXIT_SUCCESS;

3.4 Shape Factor Computation from Laser-Scanned Fragments

Another technique that has been used more recently for measuring fragment shape

is laser scanning.” This will generate a facetized solid in stereolithography (STL)

format.'> An example is shown in Fig. 13.

Fig. 13. Laser-scanned natural fragment showing mesh of 470,988 triangles covering the sur-
face. It is obvious that the fragment is not convex, which means that the many hidden surfaces
need to be accounted for when computing the projected area.

Listing 7 shows the format for an STL file.

Listing 7. stiformat.cpp

// stlformat.cpp

solid name
facet normal nl n2 n3
outer loop
vertex vlx vly vlz
vertex v2x v2y v2z
vertex v3x v3y v3z
endloop
endfacet
endsolid

Approved for public release; distribution is unlimited.

18

[o N N e

NN R W -

Thus, each facet is a triangle, specified by 4 vectors:

e an outward normal vector, which follows the right-hand rule* and

e one vector for each of its 3 vertices

For example, Listing 8 is the STL file (in ASCII format") for a regular tetrahedron.

Listing 8. tetrahedron.stla

solid TETRAHEDRON
facet normal 0.57735 -0.57735 0.57735
outer loop
vertex 0 0 1
vertex 1 0 0
vertex 1 11
endloop
endfacet
facet normal 0.57735 0.57735 -0.57735
outer loop
vertex 1 11
vertex 1 0 0
vertex 0 1 0
endloop
endfacet
facet normal -0.57735 0.57735 0.57735
outer loop
vertex 1 11
vertex 0 1 0
vertex 0 0 1
endloop
endfacet
facet normal -0.57735 -0.57735 -0.57735
outer loop
vertex 0 0 1
vertex 0 1 0
vertex 1 0 0
endloop
endfacet
endsolid TETRAHEDRON

The format is somewhat redundant in that the outward normal can be computed
from the 3 vertices and is therefore not strictly required. Indeed, some software
applications do not specify the outward normal in the STL file, so one must be
careful to check the normals. Listing 9 is a program to read in an STL file in ASCII

format and print summary information.

Listing 9. stl.a.cpp

// stl.a.cpp: reads in an ASCII STL decription of a solid and computes volume and surface area

#include <iostream>
#include <cstdlib>
#include <string>
#include <cmath>
#include <iomanip>

*The right-hand rule specifies that if the fingers of the right hand curl in the direction of the
corners of the triangle from its first to second to third point, then the thumb will be pointing in the
direction of the outward normal.

TThere is also a binary STL format, which we shall use in Listing 10.

Approved for public release; distribution is unlimited.

19

inline double square(double x) { return x x x; }
int main(void) {
std::string solid, name, facet, normal, outer, loop, vertex, endloop, endfacet, endsolid;
double nx, ny, nz, vlx, vly, vlz, v2x, v2y, v2z, v3x, v3y, v3z;
double ax, ay, az, bx, by, bz;
std::cin >> solid >> name;
int n_facets = 0;
double total_area = 0., volume = 0., mean_area;
while (std::cin >> facet >> normal >> nx >> ny >> nz) { // for each facet
std::cin >> outer >> loop;
std::cin >> vertex >> vlx >> vly >> vlz;
std::cin >> vertex >> v2x >> v2y >> v2z;

std::cin >> vertex >> v3x >> v3y >> v3z;

std::cin >> endloop;
std::cin >> endfacet;

n_facets++;

// compute twice the area of the triangle specified by its three vertices
ax = v2x - vlx;

ay = v2y - vly;
az = v2z - vlz;
bx = v3x - vlx;
by = v3y - vly;
bz = v3z - vlz;

total_area += sqrt(square(ay * bz - az x by) + square(az * bx - ax * bz) + square(ax * by - ay * bx));

// compute six times the volume of the tetrahedron formed by the given triangle and the origin
// note that this is an oriented volume, which could be positive or negative,
// and the origin is completely arbitrary so might as well use Vector(0,0,0)
volume += vlx * (v2y * v3z - v2z * v3y) + vly * (v2z * v3X - v2x * v3z) + vlz * (v2x * v3y - v2y * Vv3X);
}
total_area /= 2.;
volume /=6.;
mean_area = total_area / 4.; // from Cauchy’'s theorem

std::cout << std::setprecision(6) << std::fixed;

std::cout << "Solid name " << name << std::endl;

std::cout << "Number of facets " << n_facets << std::endl;

std::cout << "Total surface area " << total_area << std::endl;

std::cout << "Volume " << volume << std::endl;

std::cout << "Mean surface area " << total_area / 4. << " (from Cauchy’s theorem)" << std::endl;

std::cout << "Mean shape factor " << mean_area * pow(volume, -2./3.) << " (from Cauchy’s theorem)" << std::endl;

return EXIT_SUCCESS;

3.4.1 Area Contribution from Each Facet

Implicit in the specification of the triangle is an origin for its vector vertices, but the
origin itself is not explicitly specified in the STL file. It is here that the orientation
of the triangle comes to our aid, since it turns out that the origin is not necessary to

compute the triangle’s area.

Using the fact that the area of a triangle is one-half the area of the corresponding

parallelogram, the area of the triangle can be written as

A=—-1n-[(vy—vy) X (vz—vy)],)

DO | —

where 1 is the outward normal, and v1, v,, and v3 are the 3 vector vertices. Expand-

Approved for public release; distribution is unlimited.

20

ing this out provides another formula:

1
Azéﬁ'[vlXV2+V2XV3+V3XV1]. (9)

Interpreting this geometrically, it is easy to see that each of the 3 terms is positive if
the projection of the origin lies inside the triangle, but that one of these terms will be
negative if the projected origin lies outside the triangle. The net result is always the
triangle area. Equation 8 is slightly more efficient in computer code than Eq. 9 since
it requires 2 vector subtractions and only 1 vector cross product, as opposed to 2
additions and 3 cross products. Since the vector cross product in Eq. 8 points in the
same direction as the outward normal, the area of the triangle can also be computed

from the magnitude of the cross product:
1
A:§H(V2—V1)X(V3—V1)H- (10)

We have implemented 3D vectors and their associated algebra directly into software
as a C++ class, so that Egs. 8 and 10 can be coded directly. Alternatively, these

formulas can be reduced to scalar formulas by using

i 7 k
axb=det |a, a, a,
b, b, b,

=1(a,b, — a.by) + j(ab, —asb,) + R(a$by — ayby), (11)

where 1, j, and k are 3 unit vectors along the x, y, and z axes, respectively. Therefore,

the area can be written as

1
A= S\ (@b = azby)? 4 (a:by — aubo)? 4 (aby — ayby)?, (12)
or, since 1 is a unit vector normal to the facet,

1
A= g[ngc(aybz — azby) + ny(a.b, — azb,) + n.(azb, — a,b,)]. (13)

3.4.2 Volume Contribution from Each Facet

Each facet, combined with another fixed point d, makes up a tetrahedron. Let

a=v; —d,b=vy—d, and c = v3 — d, then the volume of this tetrahedron is the

Approved for public release; distribution is unlimited.

21

scalar or triple product
1
Vzaa'(bxc). (14)

The fixed point d is arbitrary, so we might as well choose the origin, in which case
the formula for the volume is simply

1
V = gVt (v X v3). (15)

This triple product is symmetric in all 3 vertices, but the order is important since
this is an oriented volume. Once again, we can code this directly in the C++ Vector

Class, or we can make use of the following formula:

A~

i j ok
axb=det |a, a, a.|, (16)
b. b, b,
so that
1
V - E[Ula: (U2yv3z - U2zv3y) + Uly(UQzUSJ: - U2$U3Z) + Ulz(UQxU?)y - U2yv3x)]' (17)

We purposely did not take the absolute value of this expression because these are
oriented volumes. We do not really know the origin for the laser scanner. It could be
inside or outside the fragment. If it is outside the fragment, then some of the facets
will contribute a negative volume to the total volume. So, although the individual
volume contributions depend upon the choice of the vector d, the total volume does

not.

3.4.3 Total Surface Area and Total Volume

By adding up individual contributions to the surface area and volume from Eqgs. 8
and 15, we can compute the total surface area and total volume of the fragment.

These formulas hold whether or not the solid is convex.

3.4.4 Projected Area

Let the viewing direction be specified by a unit vector G. Then the area of the triangle

projected on a plane that is perpendicular to 41 is given by

A,=—-10-[(va—vy) X (v3—vy)] ifandonlyif @- -0 >0. (18)

N —

Approved for public release; distribution is unlimited.

22

® NN R W —

The requirement that G - i > 0 is necessary so that we only compute the projected
area of one side of the triangle, not both sides. If the solid is convex, then the total
projected area from the given viewpoint i is the simple summation from all the
triangles. These fragments are not convex, however, which means that they have
hidden surfaces. Not taking this into account will overestimate the presented area of
the fragment. To properly account for hidden surfaces, we can use raytracing from
BRL-CAD to compute the presented area from a given direction. It is useful to know
how much the fragments deviate from convexity, so we also compute the presented

area by simply adding the contributions according to Eq. 18.

The computation of the total projected area obtained by summing the contributions
from each triangle, using Eq. 18, is fast enough that we have used 10,000 points over
the unit sphere.” But we also know that these fragments are not convex, so we have
also used 1000 points distributed over the unit sphere to raytrace a projected area
that fully accounts for hidden surfaces. Once the projected area has been computed,

the (dimensionless) shape factor, -, is then computed from vy = A,V ~%/3,

As an approximation to the true projected area, we can compute the projected area
of the STL solid without accounting for hidden surfaces and the fact that the solid is

not convex, as in Listing 10.

Listing 10. stl.b.cpp

// stl.b.cpp: reads in a binary STL decription of a solid and computes volume and surface area

#include "Vector.h"
#include "Random.h"
#include <fstream>
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <iomanip>
#include <vector>

inline double square(double x) { return x * x; }
struct facet {

float nx, ny, nz;

float vlx, vly, vlz;
float v2x, v2y, v2z;
float v3x, v3y, v3z;
unsigned int byte_count;

Y
int main(int argc, charx argv[]) {

char x file;

if (argc =2) {
file = argv[1];

}

else {
std::cerr << "Usage: " << argv[0] << " stl_binary_inputfile > outputfile" << std::endl;
exit(1);

}
char header[100] = "";

*See Appendix B for sampling strategies.

Approved for public release; distribution is unlimited.

23

34 unsigned long int n_facets = 0;

35 facet tri;

36

37 std::ifstream fin;

38 fin.open(file, std::ios::in | std::ios::binary);

39 if (fin.bad()) {

40 std::cerr << "Error in opening file " << file << std::endl;

41 exit(1);

0 }

43 std::cerr << "Contents of " << file << ": " << std::endl;

44 fin.read((char *) header, 80);

45 fin.read((char *) &n_facets, 4);

46 std::cerr << "Header = " << header << std::endl;

47 std::cerr << "There are " << n_facets << " triangles in " << file << ": " << std::endl;
48

49 double nx, ny, nz, vlx, vly, vlz, v2x, v2y, v2z, v3x, v3y, Vv3z;

50 double ax, ay, az, bx, by, bz;

51

52 double total_area = 0., volume = 0., mean_area, a_facet;

53 std::vector< va::Vector > norm;

54 std::vector< double > area;

55 for (unsigned int i = 0; i < n_facets; i++) { // for each facet

56

57 fin.read((char x) &tri, 50);

58

59 // note that we don’t need the normal vector to compute the area or volume
60 nx = double(tri.nx);

61 ny = double(tri.ny);

62 nz = double(tri.nz);

63

64 norm.push_back(va::Vector(nx, ny, nz));;

65

66 vlx = double(tri.vlx);

67 vly = double(tri.vly);

68 vlz = double(tri.vlz);

69 v2x = double(tri.v2x);

70 v2y = double(tri.v2y);

71 v2z = double(tri.v2z);

72 v3x = double(tri.v3x);

73 v3y = double(tri.v3y);

74 v3z = double(tri.v3z);

75

76 // compute the area of the triangle specified by its three vertices

77 ax = v2x - vix;

78 ay = v2y - vly;

79 az = v2z - vlz;

80 bx = v3x - vilx;

81 by = v3y - vly;

82 bz = v3z - vlz;

83 a_facet = 0.5 * sqrt(square(ay * bz - az * by) + square(az * bx - ax * bz) + square(ax * by - ay * bx));
84 total_area += a_facet;

85

86 area.push_back(a_facet);

87

88 // compute six times the volume of the tetrahedron formed by the given triangle and the origin
89 // note that this is an oriented volume, which could be positive or negative,
90 // and the origin is completely arbitrary so might as well use Vector(0,0,0)
91 volume += v1lx * (v2y * v3z - v2z * v3y) + vly * (v2z % v3x - v2X * v3z) + vlz * (v2x * v3y - v2y * v3X);
92 }

93 volume /= 6.;

94 mean_area = total_area / 4.;

95 const double F = pow(volume, -2./3.);

96

97 std::clog << std::setprecision(6) << std::fixed;

98 std::clog << "Number of facets = " << n_facets << std::endl;

9 std::clog << "Total surface area = " << total_area << std::endl;

100 std::clog << "Volume = " << volume << std::endl;

101 std::clog << "Mean surface area = " << total_area / 4. << " (from Cauchy’s theorem)" << std::endl;
102 std::clog << "Mean shape factor = " << mean_area * F << " (from Cauchy’s theorem)" << std::endl;
103

104 const int N = 100000;

105 rng::Random rng;

106 double dotprod, sf, ap, x, y, z;

107 va::Vector u;

108 std::cout << std::setprecision(6) << std::fixed;

109 for (int n =0; n < N; n++) {

110

111 ap = 0.;

112 rng.spherical_avoidance(x, y, z);

113 u = va::Vector(x, y, z);

114

115 for (unsigned int i = 0; i < n_facets; i++) if ((dotprod = u * norm[i]) > ©) ap += area[i] * dotprod;
116 sf = ap * F;

117 std::cout << sf << std::endl;

118 }

Approved for public release; distribution is unlimited.

24

119
120
121

return EXIT_SUCCESS;
}

When this is applied to the fragment (SF1290) shown in Fig. 8, we get the histogram
of shape factors displayed in Fig. 14.

o
=)
T

|

08 =

o
o
T

0.6

o
~

Probability Density Function

0.4
0.2

@WH L T [

15 2.0 2.0 25 3.0
Shape Factor Shape Factor

o
)

Cumulative Distribution Function

Fig. 14. Shape factor histograms generated by STL description of SF1290. No account has
been taken for hidden surfaces so this is an overestimate of the shape factor.

Notice the similarity to the shape factor distribution from an ellipsoid (cf. Figs. 6
and 7). Now notice what happens when we sample from all the 15 fragments that

were scanned’ (Fig. 15).

=)
T

08F

o
©
T

0.6+

o
)
T

04

=}
IS
T

Probability Density Function

0.2

o
)

Cumulative Distribution Function

I I I I
1.0 15 2.0 25 3.0 35 1.0 15 2.0 25 3.0 3.5
Shape Factor Shape Factor

Fig. 15. Shape factor histograms from 15 fragments in STL form. The routine used to gen-
erate this, stl.b.cpp, does not account for hidden surfaces, and since the fragments are not
convex, this is an overestimate. The black curve is the lognormal fit. The maximum likelihood
estimate is 4 = 0.607588 and o = 0.275688, which gives a median e = 1.71746, mean
et +o’/2 = 1,7949, and mode e#—°" = 1.57247.

Once again we see that the resulting distribution begins to approximate a lognormal

distribution.

Approved for public release; distribution is unlimited.

25

® N E W —

The next step is to take account of the hidden surfaces to come up with a more
accurate computation of the true projected area. The computer code in Listing 11

was used for this purpose, and we get the results shown in Fig. 16.

T T T
1.0+ _ .
1.0 T
o ’f”
c 2 //
£ 08f AT] g o8 e i
5 / m
< 5
2 o6l] S 06 4
] 0.6 K
I =
a @2
> a
£ L B 0.4k 4
Z 0.4 02>
8 k|
o 3
- ‘ | é o ‘]
oo | ool il ‘
0.5 1.0 1.5 2.0 25 3.0 3.5 0.5 1.0 1.5 2.0 25 3.0 3.5
Shape Factor Shape Factor

Fig. 16. Shape factor histograms for 15 fragments using stlarea. This computer code com-
putes the projected area and does account for hidden surfaces, much like the Icosahe-
dron Gage. The black curve is the lognormal fit. The maximum likelihood estimate is
p = 0.537 and o = 0.297, which gives a median e = 1.71, mean e**t°°/2 = 1.79, and
mode e#~%" = 1.57.

Listing 11. stlarea.cpp

// stlarea.cpp: Read an STL binary file and compute presented areas and shape factors

// using viewpoints from the spiral distribution over the unit sphere.

// This implementation computes a true presented area, similar to raytracing,
// by imposing a grid over the bounding box from each viewpoint and then

// checking if the grid point lies in at least one of the projected facets.

// Note: Little endian is assumed in STL so may need to convert when porting to another computer.
// R. Saucier, September 2011

#include "Rotation.h"
#include <fstream>
#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <string>
#include <vector>
//using namespace std;

struct facet {
float nx, ny, nz;
float vlx, vly, vlz;
float v2x, v2y, v2z;

float v3x, v3y, v3z;
unsigned int byte_count;

va::Vector normal(const va::Vector& vl, const va::Vector& v2, const va::Vector& v3) { // returns outward normal of
oriented triangle

return unit((v2 - vl) ~ (v3 - vl));
}

// returns twice the area of the triangle specified by its three vertices
double area2(const va::Vector& vl, const va::Vector& v2, const va::Vector& v3) { // one way to compute the area

return mag((v2 - vl) ~ (v3 - vl));
}

// returns twice the area of the triangle specified by its normal vector and its three vertices
double area2(const va::Vector& n, const va::Vector& vl, const va::Vector& v2, const va::Vector& v3) { // alternative
way to compute the area

return n * ((v2 - vl) "~ (v3-vl));

Approved for public release; distribution is unlimited.

26

102

126

// returns six times the volume of the tetrahedron formed by the given triangle and the origin

// note that this is an oriented volume, which could be positive or negative,

// and the origin is completely arbitrary so might as well use Vector(0,0,0)

double volume6(const va::Vector& vl, const va::Vector& v2, const va::Vector& v3) { // returns the oriented volume

return vl x (v2 ~ v3);

}
inline double min(double a, double b, double c) { return std::min(std::min(a, b), c); }
inline double max(double a, double b, double c) { return std::max(std::max(a, b), c); }

// fast point-in-triangle test (Ref: www.blackpawn.com/texts/pointinpoly/default.html)
bool inside(const va::Vector& p, const va::Vector& a, const va::Vector& b, const va::Vector& c) {

// compute vectors

va::Vector v0 = c - a;
Vector vl = b - a;
va::Vector v2 = p - a;

// compute dot products
double dot®O = vO * vO;

double dot@l = vO * vl;
double dot®2 = vO * v2;
double dotll = vl % v1;
double dotl2 = vl * v2;

// Compute barycentric coordinates

double w = 1. / (dot0® * dotll - dot@l = dotOl);
double u = (dotll * dot02 - dotOl = dotl2) * w;
double v = (dot@O * dotl2 - dotOl *x dot02) * w;

// Check if point is in triangle
return (u>0)& (v>0)&& (U+Vv<1l);
}

double area_projected(const std::vector<va::Vector>& facet_vl, const std::vector<va::Vector>& facet_v2, const std::vector
<va::Vector>& facet_v3, const va::Vector& u, int n_dim) {

const int N_FACETS = facet_vl.size();

static const va::Vector I(1., 0., 0.), J(6., 1., 0.), K(0., 0., 1.);
va::Vector vl, v2, v3;

double x_min = 1.e36, x_max = -1.e36, y_min = 1.e36, y_max = -1.e36;
double vi1x, v2x, v3x, vly, v2y, v3y;

double xmin, xmax, ymin, ymax;

va::Vector i = I;

va::Vector j = J;

Vi Rotation R;

va::Vector minus_u = -1. * u;

if (u !'= K & minus_u !'= K) {
R = va::Rotation(K, u);
i=R=x*1I;
j=R=x*1J;

}

// compute the bounding box in the plane perpendicular to u
for (int n = 0; n < N_FACETS; n++) {

vl = facet_vl[n];
v2 = facet_v2[n];
v3 = facet_v3[n];
vlix = vl * 1i;
V2X = V2 * 1i;
v3x = v3 * 1i;

vly = vl * j;
Vv2y = V2 * j;
v3y = v3 x j;

xmin = min(v1x, v2x, v3Xx);

xmax = max(vIx, v2x, v3x);

ymin = min(vly, v2y, v3y);

ymax = max(vly, v2y, v3y);

X_min = xmin < x_min ? xmin : Xx_min;
X_max = Xmax > X_max ? xmax : X_max;
y_min = ymin < y_min ? ymin : y_min;
y_max = ymax > y_max ? ymax : y_max;
}

const double DELTA_X = (x_max - x_min) / double(n_dim);
const double DELTALY = (y_max - y_min) / double(n_dim);
const double DELTA_A = DELTA_X % DELTA.Y;

va::Vector p, py;
double ap = 0.;
for (double y = y_min; y <= y_max; y += DELTA_X) {

Approved for public release; distribution is unlimited.

27

146

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

py =y * j;
for (double x = x_min; x <= x_max; x += DELTA_Y) {

p=xx*1i+py;

for (register int n =
vl = facet_vl[n];
v2 facet_v2[n];
v3 = facet_v3[n];

@

; n < N_FACETS; n++) {

vi=(vl*1i)x*x1i+ (vlx*xj)*xj;
V2 = (v2 * 1) *x1i+ (v2x*xj)xj;
v3=(v3*i)xi+ (v3x*])xij;
if (inside(p, v1, v2, v3)) {

ap += DELTA_A;
break;

return ap;

}
int main(int argc, char* argv[]) {

char x file;
int n_dim = 32; // grid size is n_dim x n_dim, with 32 x 32 = 1024 as default
if (argc == 3) {
file = argv[1];
n_dim = atoi(argv[2]);
}
else if (argc == 2)
file = argv[1];

else {
std::cerr << "Usage: " << argv[0] << " stl_binary_inputfile" << std::endl;
exit(1);

}

char header[100] = "";
unsigned long int number = 0;
facet tri;

std::ifstream fin;
fin.open(file, std::ios::in | std::ios::binary);
if (fin.bad()) {
std::cerr << "Error in opening file " << file << std::endl;
exit(1);
}
std::cerr << "Contents of " << file <<
fin.read((char %) header, 80);
fin.read((char *) &number, 4);
std::clog << "Header = " << header << std::endl;
std::clog << "There are " << number << " triangles in

<< std::endl;

<< file << << std::endl;
va::Vector n, vl, v2, v3;

double surface_area = 0., volé = 0.;

std::vector<va::Vector> facet_vl(number), facet_v2(number), facet_v3(number);

for (unsigned int i = 0; i < number; i++) {
fin.read((char x) &tri, 50);
n = va::Vector((double)tri.nx, (double)tri.ny, (double)tri.nz);
vl va::Vector((double)tri.vlx, (double)tri.vly, (double)tri.vlz);

v2 = va::Vector((double)tri.v2x, (double)tri.v2y, (double)tri.v2z);
v3 = va::Vector((double)tri.v3x, (double)tri.v3y, (double)tri.v3z);

surface_area += area2(n, vl, v2, v3);
vol6 += volume6(vl, v2, v3);

facet_vl[i] = v1;
facet_v2[i] = v2;
facet_v3[i] = v3;
}
fin.close();
surface_area /= 2.;

const double VOLUME = fabs(volé / 6.);
const double F = pow(VOLUME, -2. / 3.);

std::cerr <

A

"Volume = " << VOLUME << std::endl;

std::cerr << "Number of facets = " << number << std::endl;

std::cerr << "Total surface area = " << surface_area << std::endl;
std::cerr << "Mean shape factor (using Cauchy’s theorem for convex solid) =

A

A

const int N = 10;
double x, y, z, sf;

Approved for public release; distribution is unlimited.

28

<< 0.25 * surface_area * F << std::endl;

212
213
214
215
216

218
219
220
221

rng::Random rng;
for (int i = 0; 1 < N; i++) {

rng.spherical_avoidance(x, y, z);
sf = F x area_projected(facet_vl, facet_v2, facet_v3, va::Vector(x, y, z), n_dim);
std::cout << sf << std::endl;

}

return EXIT_SUCCESS;

Thus, to characterize the shape factor distribution of natural fragments, we can
either measure many fragments using the Icosahedron Gage, or we can laser scan,
possibly a fewer number. Two parameters are sufficient to characterize the lognormal
distribution, in either case. Then it is a simple matter to simulate the shape factor

using Listing 6.
4. Shape Factor Modeling

Finally, let us consider modeling the shape factor. Some penetration models, such as
THOR,? only require the presented area of the fragment at impact, in which case the
shape factor is sufficient. But other penetration models, such as FATEPEN,!? require
a specific shape and orientation. This requires a realization of the shape factor, and

the simplest shapes in FATEPEN that allow for this are a cylinder and a cuboid.

The procedure we use applies to both shapes. We start with the cylinder and cuboid
in standard orientation, which is with the axis of symmetry along the z-axis in the
case of the cylinder, and with the length along the z-axis, width along the x-axis,
and thickness along the y-axis in the case of the cuboid. The target is taken to be in

the z-y plane. Then we are given the mass m, material density p, and shape factor .

For cylinders, we randomly select a candidate L./ D, which then allows us to compute
a minimum and a maximum shape factor for this cylinder, depending upon its
orientation. If the drawn shape factor falls within this range, Vmin < 7 < Ymax, then
we know there is some orientation that will work; in the next section we work out
the formula for the appropriate yaw angle. We then have enough information to also

compute the diameter and the length of the cylinder.

For cuboids, it is the same idea except that we need to select candidate W/ L and
T /W ratios, which then provide enough information to compute a minimum and
a maximum shape factor, depending upon orientation. We then compute the 3D

rotation that will realize this shape factor. Finally, we factor this rotation into a

Approved for public release; distribution is unlimited.

29

pitch-yaw-roll rotation sequence,'? as these are required for FATEPEN.

4.1 Cylinder

The formula for the dimensionless shape factor of a right-circular cylinder (RCC) as

a function of the effective yaw angle* ¢, is'

Y(py) = asin ¢, + bcos ¢y, (19)
where 23 2/3
mL\ "L L\ 7°m

(T Z and b= (12 T 20

¢ (4D> p ™ <4D> 1 20)

The yaw angle that gives the maximum shape factor is obtained by setting the

derivative with respect to ¢, equal to zero and solving for ¢,:

(d—7) = acos ¢, — bsing, =0, 201
d¢y Y="max
which gives
L, /a
qby’Y:'Ymax = ta’n ! (g) . (22)

To simplify the notation, let ggy denote this angle: q/ﬁ; = (yy=ym- 1heN,

~

a b
max — =a + b =
e = 1(00) = 0 s TV

and we can write

Va2 + 12, (23)

G = Ymax SIN gz?y and b = Ypax COS gz?y, 24)
so that Eq. 19 can be written as

’y(qﬁy) _ “Ymax COS(Q/S\?J - ¢y) lf st > q}/ (25)
“Ymax COS(¢y - ‘by) if (by < ¢y

*Note that effective yaw includes pitch and is defined by ¢, . = cos~!(cos ¢p COS ¢y), Where
¢p is pitch and ¢, is actual yaw, but we use ¢,, rather than ¢, .¢ just to simplify the notation.

Approved for public release; distribution is unlimited.

30

where gz/S; = o8 (b/max). Solving for the yaw angle, we get

cos ™ (b/Ymax) + €087 (7/Vmax) ify < b
Py = .) (26)
cos™H (b/Ymax) — €087 (V/Vmax) ify > D

which shows that we can easily get the orientation (yaw angle) of an RCC from the

shape factor at impact.

The minimum shape factor is

L\ L L =
-— — if =—=<- isk-lik
(4D) D 1 D < 1 (disk-like) o
Ymin =
L\ P r L «)
(Z E) Z if E > Z (rOd-llke)
Solving this for L/ D for a given minimum shape factor, we get
2 L
. G) SR <% (disk-like)
— = (28)
D /2 L
G) Yl i > % (rod-like)

The minimum shape factor for natural fragments is around 0.5. Inserting this value

into this equation gives

0.077 if (disk-like)

L
D (29)
25 if = >

Ol T
YIS N

(rod-like)

The maximum shape factor for natural fragments is around 5.5. Inserting this value

into the appropriate cubic equation (see Appendix A, Eq. A-46) gives

0.0691055 if < (disk-like)

(30)
102.619 if

> (rod-like)

Ul O~
N N

The L/D value for a rod-like RCC is unrealistic, so we choose disk-like RCCs to
model the maximum shape factor. Selecting disk-like RCCs with L/D in the range

Approved for public release; distribution is unlimited.

31

[o N N N

from 0.069 to /4 will span the range of shape factors from 0.5 to 5.5. The actual

code that generates a yawed RCC to represent the shape factor is given in Listing 12.

Listing 12. sf-rcc.cpp

// sf-rcc.cpp: Implementation of an algorithm for generating FATEPEN RCCs to represent a specified shape factor.
// Given a dimensionless shape factor, generates the L/D and yaw angle for the RCC to represent it.
// The RCCs are disk-like in order to span the range of shape factors from 0.5 to 5.5.

// R. Saucier, October 2011

#include "Random.h"
#include <iostream>
#include <cstdlib>
#include <cmath>

int main(int argc, charx argv[]) {

int N = 1000; // number of samples or override on command line
const double R2D = 180. / M_PI; // to convert from radians to degrees
const double SF_MIN = 0.5; // minimum shape factor (found from artillery fragments)
const double SF_MAX = 4.5; // maximum shape factor (found from artillery fragments)
if (argc == 2) N = atoi(argv[1l]); // override default number of samples on command line

// default values for the shape factor lognormal distribution from 122mm, 152mm and 155mm artillery
double mu 0.596514; // these two parameters characterize the lognormal shape factor distribution
double sigma 0.340874; // with mode = 1.62, median = 1.81 and mean = 1.93

rng::Random rng;
double a, b, ¢, th, sf_min, sf_max, sf, 1.d, 1, d, yaw, V = 1.; // here we use a fragment with unit volume

for (int n = 0; n < N; n++) {

// normally, the shape factor would be provided, but here we get a shape factor within bounds [SF_MIN, SF_MAX]
do { sf = rng.lognormal(0., mu, sigma); } while (sf < SF_MIN || sf > SF_MAX);

// now we want to realize this shape factor with a yawed cylinder

do {
1.d = rng.uniform(0.069, M_PI_4); // disk-like RCCs (l_d = 0.069 corresponds to sf_max = 5.5)
c = pow(M_PI_4 x Ld, -2./3.);
a=cx* ld;
b =c *x M.PI_4;
sf_min = a;
sf_max = sqrt(a * a +b *b);
} while (sf < sf_min || sf > sf_max);

if (sf <b) th = acos(b / sf_max) + acos(sf / sf_max);

else th = acos(b / sf_max) - acos(sf / sf_max);
d =pow(V/ (MPI_4 x 1.d), 1./3.);

1T =dx* ld;

yaw = th * R2D;

std::cout << sf << "\t" << 1.d << "\t" << yaw << std::endl;

}
return EXIT_SUCCESS;

This algorithm is stochastic, so that for a given shape factor there will be a range
of L/ D ratios and yaw angles that can represent the fragment. This will result in a
range of residual velocities, but this range will be relatively small. For example, a
725-gr steel RCC with a shape factor of 1.93 striking a 1/4-inch mild steel plate at
3500 {/s results in a residual velocity of 1988 =+ 23 f/s.

4.2 Cuboid

The procedure for realizing the shape factor as a cuboid with a specific pitch, yaw,

and roll" is implemented in the code in Listing 13.

Approved for public release; distribution is unlimited.

32

[e N N

57
58
59

61
62
63

65

67

69
70

71
72
73
74
75
76

78
9

Listing 13. sf-rpp.cpp

// sf-rpp.cpp: Monte Carlo shape factor from a lognormal distribution

// This code demonstrates how it is possible to make use of a lognormal shape factor distribution,

// and at the same time create RPPs for FATEPEN that have the proper volume and presented area.

// Given the fragment volume (or mass and density), it provides everything that FATEPEN requires:

// the length, width, and thickness of the RPP, as well as the pitch-yaw-roll rotation sequence

// that will take the RPP from standard orientation to the orientation that realizes the shape factor.

// R. Saucier, September 2011

#include "Random.h"
#include "Rotation.h"
#include <iostream>
#include <cstdlib>
#include <cassert>
#include <iomanip>

const double SF_MIN = 0.5;
const double SF_MAX = 4.5;
const double MU = 0.596514;
const double SIGMA = 0.340874;
const va::Vector I(1., 0.

int main(void) {

const int N_SAMPLES = 10000

// minimum shape factor
// maximum shape factor
// these two parameters

// mode = 1.
, 0.),3(0., 1., 0.

i

const double WL MIN = 0.185; //
const double T_W_MIN = 0.185; //
const double G2GR = 15.4324; //
const double GR2G = 1. / G2GR; //
const double MASS = 725. * GR2G; //
const double RHO = 7.83; //
const double V = MASS / RHO; //
const double V_23 =pow(V, 2./3.);

62, median =

), KCO.,

minimum W/L
minimum T/W

characterize the lognormal shape factor distribution
1.81, mean = 1.93
0., 1.);

I
v

ratio (must be 0.185 or smaller to get SF_MAX =
ratio (must be 0.185 or smaller to get SF_MAX = 5.5)

to convert grams to grains

to convert grains to grams

mass (725 grains converted to grams)
density of steel (g/cm”3)

volume (cm”3)

double th, th_max, Amin, Amax, w_1, t.w, Ax, Ay, Az, W, L, T;

va::Vector Ap, u_max, axis, u;
va::Rotation R;
va::sequence s;
rng::Random rng;

double cp, cy, cr, sp, sy, sr, p, y, r, sf, ap, apcalc;

std::cout << std::setprecision(6) << std::fixed;

for (int n = 0; n < N_SAMPLES

;one) |

// normally, the shape factor would be provided, but here we get a shape factor within bounds [SF_MIN, SF_MAX]
do { sf = rng.lognormal(0., MU, SIGMA); } while (sf < SF_MIN || sf > SF_MAX);

sf = 1.93; // or select from a lognormal distribution

ap = sf x V_23;

do {
w_1 = rng.uniform(W_L_MIN, 1.); //
t-w = rng.uniform(T_W_MIN, 1.); //
w =pow(V xwl/ tw, 1./3.); //
L =W/ wl; //
T =W * tw; //
Ax =1L x*xT; //

orientation

Ay =1L xW; /7
Az =WxT; //
Amin = Az; //
Amax = sqrt(Ax x* AX + Ay * Ay + Az x Az); //

} while (ap < Amin || ap > Amax);

Ap =Ax * I + Ay * J + Az * K; 1/

u_max = Ap / Amax; //

R = va::Rotation(K, u_max); //

Amax

axis = va::Vector(R); //

th_max = double(R); /7

th = th_max - acos(ap / Amax); //

R = va::Rotation(axis, th); //

va::Rotation R2(K, rng.uniform(0., 2. * M.PI));

K

s = va::factor(R2 * R, va::XYZ);

p = s.first; // pitch (rad)

y = s.second; // yaw (rad)

r = s.third; // roll (rad)

cp = cos(p);

cy = cos(y);

cr =cos(r);

sp = sin(p);

sy = sin(y);

Approved for public release; distribution is unlimited.

ratio of W./L

ratio of T/W

width of RPP

length of RPP

thickness of RPP

presented area orthogonal to x-axis (intermediate) in initial

presented area orthogonal to y-axis (maximum)
presented area orthogonal to z-axis (minimum)
min presented area
max presented area

presented area vector
u_max is direction which realizes Amax = Ap * u_max;
rotation which takes K to u_max, and will take |Ap| from Amin to

fixed axis of this rotation
angle of rotation to rotate K to u_max
rotation angle for u
rotation which takes K to u
// this should have no effect upon the projected area perp to

// pitch-yaw-roll rotation sequence

33

sr =sin(r);

apcalc = fabs(sp * sr - cp * sy * cr) * Ax + fabs(sp *x cr + cp * sy * sr) * Ay + fabs(cp * cy) * Az;

assert (fabs(ap - apcalc) < 0.001);

std::cout << w_l << "\t" << t.w << "\t" << p * va::R2D << "\t" << y * va::R2D << "\t" << r * va::R2D << std::endl;

}
return EXIT_SUCCESS;

}

This will result in a range of residual velocities. For example, a 725-gr steel cuboid
with a shape factor of 1.93 striking a 1/4-inch mild steel plate at 3500 f/s results
in a residual velocity of 2464 + 363 f/s, much more variation than is the case with

cylinders.

5. Conclusions and Recommendations

We have provided explicit analytical formulas for the shape factor distributions of
some common shapes with random orientations. And we have shown that it is easy
to simulate these shape factor distributions with computer code and demonstrated
through plots that the simulations match the plots from the analytical formulas. When
we examine natural fragment shape factor distributions, however, the only shape that
comes close is an ellipsoid. But it, too, fails to provide an adequate representation by
simply randomizing its orientation. We can work out the dimensions of the ellipsoid
from the projected area measurements, but then the volume comes out wrong because

it does not account for hidden surfaces.

A better approach to shape factor simulation was found after enough natural fragment
data was processed to reveal that it could be fit with a lognormal distribution. The
measurement of fragment shape factor with the Icosahedron Gage does not give
any indication of a lognormal distribution with only 16 measurements, but once
we combine the measurements from hundreds of fragments, the resemblance to
the lognormal is striking. Rather than trying to find a shape that will will work
by randomizing the orientation, it makes more sense to use the lognormal as a

probability distribution in Monte Carlo sampling.

We also showed that laser scans of fragments can be used to compute the fragment
shape factor from any viewpoint, and we described a variety of methods of achieving
a uniform spherical distribution. Computing fragment volume and projected area is
fast if we treat the fragments as convex solids. But natural fragments are not convex,

and accounting for hidden surfaces uses much more computer time.

Approved for public release; distribution is unlimited.

34

Finally, we showed that it is possible to realize each fragment mass and shape factor
as either a yawed cylinder or a cuboid with a pitch, yaw, and roll. Thus, we have a
procedure for generating all the input variables required to run THOR or FATEPEN

from the given mass and shape factor.

Approved for public release; distribution is unlimited.

35

References

Yatteau JD, Zernow RH, Recht GW, Edquist KT. FATEPEN. Ver. 3.0.0b. Ter-
minal ballistic penetration model. Applied Research Associates (ARA) Project
4714, prepared for Naval Surface Warfare Center, Dahlgren, VA; 1999 Jan.

Yatteau JD, Zernow RH, Recht GW, Edquist KT. FATEPEN fast air target
encounter penetration (Ver. 3.0.0) terminal ballistic penetration model. Littleton
(CO): Applied Research Associates, Inc.; 2001 Sep. Rev. 2005 Feb 2. (Analyst’s

manual; vol. 1).

Project THOR. The resistance of various metallic materials to perforation by
steel fragments: empirical relationships for fragment residual velocity and resid-
ual weight. Aberdeen Proving Ground (MD): Army Ballistic Research Labora-
tory (US); 1961 Apr. Report No.: TR-47.

Morse M, Transue WR, Heins MH. The theory of the presentation areas of
fragments and the icosahedron area gage. Washington (DC): Office of Chief of
Ordnance; 1944. TDBS Report No. 44 (DTIC No. AD496365).

International Test Operations Procedure (ITOP) 4-2-813. Static testing of high-
explosive munitions for obtaining fragment spatial distribution. NP; 1993 Mar
30.

Levin DM. Support instrumentation development for automatic shell fragment
area measurement system. TECOM Project No. 2-MU-001-934-000; Aberdeen
Proving Ground (MD): Army Aberdeen Test Center (US); 1994. Army Combat
Systems Test Activity (US). Report No. CSTA-7607.

Mallory TD. A 3-D scanning technique for determining fragment shape factor.
Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2007 Jul.
Report No.: ARL-TR-4183.

Klopcic JT, Lynch DD. Static and dynamic characterization of the M107 (com-
position B filled) artillery projectile. Aberdeen Proving Ground (MD): Army
Research Laboratory (US); 1997 Sep. Report No.: ARL-TR-1496.

Klopcic JT, Lynch DD. Static characterization of the OF-462, 122-mm (TNT
filled) artillery projectile. Aberdeen Proving Ground (MD): Army Research
Laboratory (US); 1998 Sep. Report No.: ARL-TR-1762.

Approved for public release; distribution is unlimited.

36

10.

1.

12.

13.

14.

15.

Klopcic JT, Lynch DD. Static characterization of the OF-540, 152-mm (TNT
filled) artillery projectile. Aberdeen Proving Ground (MD): Army Research
Laboratory (US); 1998 Sep. Report No.: ARL-TR-1763.

Collins J. Empirical fragment shape models for OF-462 (122 mm), OF-540
(152 mm), and M107 (155 mm) artillery projectiles. Aberdeen Proving Ground
(MD): Army Research Laboratory (US); 1999 Jul. Report No.: ARL-TR-2008.

Wikipedia. STL (file format). 2016 Feb. 19. [accessed on the Web 2016 Mar. 2].
Wikipedia, The Free Encyclopedia;
http://en.wikipedia.org/wiki/STL_(file_format)

Kuipers JB. Quaternions and rotation sequences: a primer with applications to
orbits, aerospace, and virtual reality. Princeton (NJ): Princeton University Press;
2002.

Saucier R. Shape factor of a randomly oriented cylinder. Aberdeen Proving
Ground (MD): Army Research Laboratory (US); 2000 Jul. Report No.: ARL-
TR-2269.

Saucier R. Resolving the orientation of cylinders and cuboids from projected
area measurements. Aberdeen Proving Ground (MD): Army Research Labora-
tory (US); 2016 May. Report No.: ARL-TN-0759.

Approved for public release; distribution is unlimited.

37

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

38

Appendix A. Analytical Shape Factor Formulas for 5 Convex Solids

Approved for public release; distribution is unlimited.

39

NN B W —

Here we cite explicit formulas for the probability density function (PDF) and the
cumulative distribution function (CDF) for 5 convex solids that have a random
orientation. For each solid, we also list code that can be used to plot the PDF and
CDF.

A-1. Cube
The PDF f(7) is given by'

o jg_ﬁ‘*ftaw(‘f 2—72> it 1<y<v2
=

4 if V2<y<V3

(A-1)

F(v) = 6 [tan_1 <m> +tan~! <2+ \/3’7)1 if 1<y<v2 (A-2)

4
—=-3 if V2<y<V3

These formulas are implemented in the code in Listing A-1 and shown plotted in
Fig. A-1.

Listing A-1. cube.cpp

// cube.cpp: generates plotting points for cube pdf and cdf

// Ref: Vickers, G. T. and Brown, D. J.,

// "The distribution of projected area and perimeter of convex, solid particles,"
// Proc. R. Soc. Lond. A (2001), Vol. 457, pp. 283-306.

#include <iostream>
#include <cmath>

#include <cstdlib>
#include <cassert>

static const double SQRT2 = M_SQRT2, SQRT3 = sqrt(3.);
double pdf(double x) {
assert(1. <= x && x <= SQRT3);
if (x <= SQRT2) {
double a = sqrt(2. - x * x);

return 4. / SQRT3 - 4. x SQRT3 atan(SQRT3 * a / x) / M_PI;
}
else
return 4. / SQRT3;
}

double cdf(double x) {
assert(1. <= x & x <= SQRT3);

if (x < SQRT2) {
double a = sqrt(2. - x * x);

Vickers GT, Brown DJ. The distribution of projected area and perimeter of convex, solid particles.
Proc R Soc Lond A. 2001;457:283-306.

Approved for public release; distribution is unlimited.

return 4. * x / SQRT3 - 3. - (4. * SQRT3 * x / M_PI) * atan(SQRT3 * a / X) +
(6. /MPI) (atan((2. - SQRT3 * x) / a) + atan((2. + SQRT3 * x) / a));
}
else
return 4. x x / SQRT3 - 3.;
}

int main(int argc, charx argv[]) { // specify number of points on commandline or use 1000

int N = 1000;
if (argc == 2) N = atoi(argv[l]);

const double GMIN = 1., GMAX = SQRT3;
for (double g = GMIN; g <= GMAX; g += (GMAX - GMIN) / N)
std::cout << g << "\t" << pdf(g) << "\t" << cdf(g) << std::endl;

return EXIT_SUCCESS;

The conventional way of turning this into a shape factor probability distribution is
to sample the uniform distribution between 0 and 1, P ~ U(0, 1), and then invert
F to get v = F~!(P). But there is no simple way to solve Eq. A-2 for v when
1 <~ < /2, so instead we simulate the shape factor probability distribution by
uniform random sampling over the unit sphere and compute the shape factor for

each orientation to build up a probability distribution.

1.0
2.0} 5
5 T 08
2 15F c
> £ 06
8 1ol 8
2 0 04
= 13
8 =
o ©
Qo -
o 051 2 L
IS §02
o
0.0+ B 0.0+
| I I I I I I I | I I I I I I I
1.0 1.1 1.2 1.3 1.4 15 1.6 1.7 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Shape Factor Shape Factor

Fig. A-1. Plot of shape factor PDF and CDF for a randomly oriented cube

A-2. Cuboid

The source for the following formulas is Walters.?

A-2.1. Notation

Let L > W > T be the length, width, and thickness of the cuboid, so that length is
always the largest dimension and thickness the smallest. By setting

A, =WT, A,=TL, A =LW, (A-3)

2Walters AG. The distribution of projected areas of fragments. Proc Cambridge Phil Soc Math
and Phys Sci. 1947;43:343-347.

Approved for public release; distribution is unlimited.

41

we order the areas of the 3 faces so that A, < A, < A, and match the notation in

Walters?. If we only know the 3 face areas, then we can get the dimensions from

A, / /A A,
=\ A (A-4)

To simplify the notation, let x represent the variable presented area and define

a=A, b=A c=A,, m=d>+b+E (A-5)

i)

c=Vm2—a?, x1py,=vVm?2-—-0, x.=vVm?—c2 (A-6)

Walters? also defines the following quantities:

m? + x? m? + ¢? 2m2a? 2m?2c?
A= S e P P O
1 1 1
a = poppet p = popprt y = sl (A-8)

A-2.2. Integrals

Using « as the variable presented area, we make use of the following 4 indefinite
integrals:

I(x) = /sin_l(A — a1 D)dx

=xsin (A —a; D)

2 _ 2 Ve a——)
+ 2mtan~! <w> — 2ctanh ™! <W> for a <z <z, (A-9)

c m

Iy(x) = /sin_l(A — a,D)dx

22 _ 22
=zsin” (A — a,D) — 2mtan~! bf for a <z < xy (A-10)
Is(x) = /sin_l(A — oy D)dz
22 _ 22
= xsin_l(A —ayD) — 2mtan™' | Y24 | for a <z <z, (A-11)
a
Iy(z) = /sinfl(Az —a1D,)dx
Vow
= xsinfl(AZ —oa1D,) + 2ctanh ™! <w> for a <z <z, (A-12)
m

Approved for public release; distribution is unlimited.

42

The corresponding definite integrals are
Ii(xy,29) = Li(x9) — I;(xq) for i =1,2,3,4. (A-13)
It is also convenient to define the following 2 constants:

ki =sin”'(A, —a,D,) and ko =sin (A, —«q,D,). (A-14)

A-2.3. Probability Density Function and Cumulative Distribution Function

Let f(z) represent the probability density function and F'(x) represent the cumulative
distribution function. The following expressions for f(z) are taken from Walters,?
and F'(x) is obtained by integrating the corresponding density function. There are 2
cases to consider, depending upon the value of a? + b? relative to ¢, and each case

has 6 distinct regions.

Case1: a2 +b%2 < 2
e Casel.l: a<x<b
f(z) = %[Sin_l(A — a1 D) —sin ' (A — a, D) +sin” A, —a1D.) — k1] (A-15)

F(z) = %[Il(aw) — L(a,z) + Iy(a,x) — ki (x — a)) (A-16)

e Case 1.2: b< x < @,

f(z) = %[2 sin™!(A — @y D) —sin” (A — a,D)—
sinfl(A—ayD) +2sin" M (A, —a1D.) — Kk — ko) (A-17)
Fz) = ——[I1(a,b) — I(a,b) + Ta(a,b) — k(b — a) + 211 (b, 2)—

™m

Iy(b,x2) — I5(b, z) 4+ 214(b, z) — k1(xz — b) — ka(z — D)] (A-18)

e Case1.3: z. <x<c

f(z) = %[% —sin™'(A — a, D) —sin” (A — o, D) — ky — ko] (A-19)
F(z) = %[Il(m b) — Iz(a,b) + I4(a,b) — k1 (b —a) + 211 (b, z.)—

Ig(b, I’C) — [3(b, IC) + 2[4(b, Ic) — kl(SCC — b) — kg(l‘c — b)+
2n(x — xo) — Io(xe,) — Is(Te,) — k1 (x — x0) — ko(x — 2.)] (A-20)

Approved for public release; distribution is unlimited.

43

e Case 14: c<x <y

flz) = %[w —sin"'(A — o, D) —sin” (A — ay D)) (A-21)
F(z) = %[Il(a, b) — Iz(a,b) + I4(a,b) — k1 (b — a) + 211 (b, z.)—

I(b,x.) — I3(b,) + 214(b, xc) — k1 (ze — b) — ka(ze — b)+
2r(c — x.) — Ia(me, €) — I3(xe,) — ki(c — ze) — ka(e — o)+
2r(xz — ¢) — 215(c, z) — 215(c,)] (A-22)

e Case 15: xp < x < x4

flz) = %[&r — 2sin” (A — a,D)] (A-23)

F(#) = —{1(a,) ~ Ta(a,) + La(a,D) ~ k1 (b~ a) + 211 (b, 7) -
Iy(byxc) — I3(b,z.) + 214(b, xc) — k1 (xe — b) — ko(xe — b)+
21(c — xe) — In(we,) — Is(xe, €) — ki(c —) — ka(c — xc)+
21 (zp — ¢) — 215(c, 2p) — 203(c, xp)+
3m(z — zp) — 213 (xp, x)] (A-24)

e Case1.6: z, <x < m

f@) = (A25)
F([L’) = %[Il(a, b) — Ig(a,b) + I4(a,b) — kl(b — a) + 2]1((7, .’Ec)—

Iy(b,x.) — I3(b,x.) + 214(b, xc) — k1 (ze — b) — ka(ze — b)+
2r(c — x.) — In(me, €) — I3(xe,) — ki(c — xe) — ka(e — zo)+
2m(xp — ¢) — 202(c, xp) — 213(c, xp)+

3n(xq — xp) — 2I3(xp, x4)] + %(m — Zq) (A-26)

Case2: a? + b2 > 2
e Case2.l: a<xz<b
flz) = %[sinfl(A —a1D) —sin"H(A - a,D) +sin" A, — a1 D.) — k1] (A-27)

F(x) = L[Il(a, x) — Ix(a,z) + I4(a, z) — k1(z — a)] (A-28)

™m

Approved for public release; distribution is unlimited.

44

e Case22: b<xz<ec

f(z) = %[2 sin"'(A — a; D) —sin" Y (A — @, D) —sin” Y (A — o, D)+
2sin YA, — a1 D) — ki — ko] (A-29)
1
F(z) = %[Il(a, b) — Iz(a,b) + Is(a,b) — k1 (b —a) + 2I1 (b, z)—

IQ(b, SC) — Ig(b, ’JJ) —+ 2[4(1), ZL’) - kl(ZL' — b) — kQ(SC — b)] (A-SO)
o Case23: c<xz < =,

flx) = %[sin_l(A — D) —sin"Y(A — o, D)+
sin~'(A, —a;D,) —sin"' (A — a, D)] (A-31)
F(z) = %[Il(a, b) — In(a,b) + Li(a,b) — k(b — a) + 211 (b,)~

I5(b,c) — I3(b,c) + 214(b,c) — k1(c — b) — ka(c — b)+
201 (c,x) — 2I5(c,x) — 2I3(c, x) + 214(c,)] (A-32)

e Case2.4: z. < x < xp

flx) = %[w —sin"'(A — a, D) —sin"' (A — o, D)] (A-33)

F(x) = %[Il(a, b) — Ix(a,b) + I4(a,b) — k1 (b —a) + 211 (b,c)—
I5(b,¢) — I3(b, ¢) + 214(b,¢) — k1(c — b) — ka(c — b)+
21 (e, z.) — 2Ia(c, xe) — 213(c, o) + 214(c, xe)+
2m(x —) — 2I5(z(,) — 2I3(xc,)] (A-34)

o Case2.5: p < zx < x,

f(z) = %[zﬁ —2sin" (A — a,,D)] (A-35)
F(z) = %[h(a, b) — In(a,b) + Iy(a,b) — ki(b — a) + 21, (b, c)—

Ir(b,c) — I3(b,c) + 2I4(b,c) — ki(c — b) — ka(c — b)+

21 (e, z) — 2Ia(c, xe) — 213(c, o) + 214(c, xe)+

2m(xp — xe) — 2Ia(x(, xp) — 213(2e,)+

3r(z — xp) — 213 (xp,)] (A-36)

Approved for public release; distribution is unlimited.

45

e Case2.6: zo, <x < m

4
fla)=— (A-37)
F(x) = %[Il(a, b) — Ix(a,b) + I4(a,b) — k1 (b —a) + 211 (b,c)—
Iz(b,c) — I3(b, c) + 214(b,c) — k1(c — b) — ka(c — b)+
20 (e, x) — 2Ia(c, o) — 203(c, o) + 214(c, xe)+
27T($b — {EC) — 2-[2(1'1271'!7) — 2[3(1'c7xb)+
3m(ze — 2p) — 203(xp, x4)] + %(m —) (A-38)

These formulas have been implemented in Listing A-2. Example plots are displayed
in Fig. A-2.

0.6 T T T T T T T T
1.0

- 0.5 &
£ S 08
S o4 H
U:_ r c
E 2 06
2 o3l g
a B
£ 2 04
3 02f 2
© ©
g E
o o4 S 0.2

0.0 I I I I I L L 1 00— | .

0.6 0.8 1.0 1.2 1.4 16 1.8 2.0 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Shape Factor Shape Factor

Fig. A-2. Plot of shape factor PDF and CDF for a randomly oriented cuboid with L = 3,
W=2T=1

Approved for public release; distribution is unlimited.

46

{9 TX D 'q ‘e)ZT - (gX ‘D ‘g ‘e)ZT udniaJ } (gx 91gnop ‘Ix 31Gnop ‘> 31gnop ‘g 1gnop ‘e 31gnop)ZT I1gnop dUTIUT

‘Z7IdW * (Zax)3dbs- uun

uAQ\ANX|N3Xv#LUmvcm#m*E*.N.AANX*ANU+NGV.ANU+NNV*NEV\ANX*ANE:NE.NU+NGV+ANU+NMV*NEVVCMmN*XCL:

104
ESE]
194

(zax > zx) 41

‘7q - Tw = zZax

X ok X = ZX

{(zw)yabs = w
70+ 79 + e =zqu
D x02=7
‘qxq=29

‘e x & = ZB

} (x 21anop ‘> @1gnop ‘q 1qnop ‘e a1anop)

a19nop
a1gnop
a19nop
a19nop
a19nop
a1gnop
a19nop

zT 91anop

{*C1x ‘2 ‘g ‘e) 1T - (gx ‘D> ‘g ‘e)IT uinlal } (gx 91gnop ‘Ix d1gnop ‘d> 91gnop ‘q 91gnop ‘e d1gnop)IT I1GNOP SUTIUT

fZ7IdW * (29X)3abs uun

fQw / (gX - 7oX)34bs Jyuele x 3 x ‘z - (D / (X - ¢OX)3dbs Jueye kW ok T 4+ ((HX - ZX x (O - QW) + QW x 2O) / (HX + X x (QW - T2) + W % g2))UTSE x X uJn
(x> ¢

10 - w = 7o

12X x TX = pX

X ok X = ZX

{(zw)ydbs = w
D+ 79+ e =z
D x0 =7
‘qxq=2¢q

‘e x & =B

} (x 31gnop ‘3> 31qnop ‘q 31qnop ‘e 31gnop)

{4 (2 “(Qq ‘e)xew::pys)utw::p3s ‘(q ‘e)UTW::p3S)Xew::p3s uanidaJs } (2 91gnop ‘g a1gnop ‘e a1qnop)pTw 31gn
{ f(2 ‘(g ‘e)xew::p}s)Xew::pis uinias } (> 31gnop ‘q 21gnop ‘e I1gnop)Xxew 31gn
{ Y2 ‘(g ‘e)uTw::pys)UTW::p3sS uanidJs } (2 91qnop ‘g d1gnop ‘e I1gnop)utw I)1gn

<1J49SSed>
<yjeuwd>
<qT1p3sO>
<wesaJ3soT>

0107 1T4dy ‘JaTd

"9v6T A\nC Sz ‘Lpe-zve "dd ‘gp "10A ‘°20S “1Tyd 9bpTUque) doJ

., ‘sjuswbesq Jo seady pa1dalodd JO UOTINQTJIIASTQ @Yl, ‘'Y ‘S4911®
*uotaduny A3Tsuap A3T1Tgeqodd ayy Joj ejnwaoy ,SJd31eMm butiedbajut
Aq pauTe1qo ST ST YDTYM ‘UOTIOUNS UOTINGTIISTP IATIRINUND

Jo03oey) adeys ayy saindwod ‘ddy ue jo syibua) 9pTS dyl uaAry :d

194
ESE)
194
X) 4T
a1qnop
a1qnop
a1qnop
a1qnop
a1qnop
a1qnop
a1qnop
a1qnop

TT @19nop

op BUTIUT
op BUTIUT
0p BUTIUT

apN1dUT#
Spn1ouT#
Spn1ouT#
apn1ouT#

nes 'y //
d //
M 143y //
//
//
d>-ddu //

ddo-ddx *z-vy Sunsr

— N O~ ®©

47

distribution is unlimited.

]

Approved for public release;

e1nNWIOo4 ,SJ4d11eM UT Ay ‘eade 21eTpawdajut // {7
e1NWI04 ,SJd)11BM UT Xy ‘eade 3sayjews // ‘1

J03oe) adeys 0} eale 1JUIAUOD 0} J03De)

J030e4 adeys 03} eade wodj) 4dd 3IJ4DAUOD 0} Joldel
auwn)on

yibus) ST uoTsuswip 1sabuey

YIPTM ST UOTSUSWTP 9ILTPAWIDIUT

SSBUMDTY] ST UOTSUSWTP }S91)BWS

9UT] PUBWWOD ¥y} U0 (JdpJo Aue uT) SUOTSUdWIP € Yy Ay1dads Jo //
y1buay 9pTS 1TUN Jo BQNd B ST 11Neysp //

{f(1x 2 ‘g ‘e)pT - (gx ‘2 ‘qQ ‘e)pT uinidJd } (gx 1gnop ‘IX d1gnop ‘> a1qnop ‘q

//
//
//
//
//
//

H
o

1=q
M=k

‘€ / *z- ‘A)mod = g5 @1anop

€ / 'z+ ‘A)mod = TS 91anop

L% M7= A a1anop
f(3 'm ‘))xew = 7 81gnop
f(3 'm ‘1)pTIw = M 919nop
f(3 'm ‘1)utw = | 81gnop

f([€lnbuae)jo3e

f([2lnbae)jo3e

*([T]nbue)jore

} (v == 264
T=3"T=mn"T=1

—~

f(w/ (zx - goX)3abs)yueye x > x "z + ((gx * (70 - qw) + (@ -qw) x>) / (gx*x (qw+ 2)+ (qw-gd) * 1>))UISe x X udn

} (x @1gnop ‘> 21gnop ‘q 91gnop ‘e 1gnop)yT 919nop

{4 TX D ‘q ‘e)ET - (zx ‘D ‘g ‘e)ET uinlai } (gx 91QNop ‘Ix 31Gnop ‘> 91gnop ‘q 91gnop ‘e 31gnop)€T S1gnop SUTIUT

fZ7Id W *x (29X)3dbs uun
(% >¢7

{70 - w = 2ox

X ok X = gX

S qw)yabs = w

70+ 79+ e =qu

D *x0 =7

‘q*xq=2q

‘e x B = B

{7Id W * (gex)idbs- uun

21gqnop
a19nop

3su0d
3SU0d
3sU0d
3SU0d
3sU0d
3SU0d
{
=1
M
=1
e) 4T
21qnop

([1ABue xueyd ‘dbue JUT)uTew Ut

51Qnop ‘e 914nop)T 1gnop SUTIUT

184
ESE
184
X) 4T
a1qnop
a1qnop
a1qnop
a1qnop
a1qnop
a1qnop
a1qnop

304
ESE]

‘(e / (gx-zex)ubs juere x wx 'z - ((X *x (P +29) - (@ +7q) *qw) / (X* (gqw-2w-72+29) + (22+¢9g) *qw))urse x X uinial
(zex > zx) 41

} (X 21gnop ‘> 91gnop ‘g 91gnop ‘e S1gnop)€T I14nop

‘e - zw = zex

X x X = X

{(zw)ybs = w
0 +79 +ze=zu
D x0=7
‘qxq=2¢q

‘e x B = z®

21qnop
91qnop
21qnop
21gqnop
219qnop
219nop
219nop

o1

L9

48

distribution is unlimited.

]

Approved for public release;

q ased // } (X >XxR89 X =>q) JT as)d

{
(e -x)xTIM-(x‘e’D‘qe)pT + (X ‘®D'q‘e)gr - (x ‘e D’q‘e)IT) *)=4pd
O - v+ T - T4) x D = 4pd

eased // } (Qg>XRYX=>¢€)T

70 => zq + ge :9sed // } (2 => 23X) IT
‘(za * Teydie - zyl73g)utse =)

“(P * AVHdIY - e119p)uTse = g}

(P * XVHdIVY - e319p)utse = 74

f(p * Teydie - e319p)utse = T4

(X +) /1 = 1eydie

(X - W) /X k qu x T = p
f(ex - quw) / (X + qw) = exnsp
X * X = X

} (2UT =+ X ‘w=>X {e=X) 4o}

f(N)91gnop / (e - w) = DUT 91gnop 1Suod

!0AOT = N IUT 3suod

eaJe pajdafosd wnwixew ayj ST w pue ease paldalfodd wnwrtutw ayy ST € //

tt0 = 4pd> ‘r0 = 4pd ‘4s ‘py ‘€4 ‘74 ‘T4 ‘Teydie ‘p ‘e1ldp ‘gx ‘x 91gnop

((ex ‘gx 2 ‘q ‘e)ET - (gqXx - BX) * Id W * §'T

(. (ax ‘ox 2 ‘q ‘e)ET - (gx ‘dx ‘D ‘g ‘e)gT - (OX - OX) * IdW

fC(ax 2 ‘g ‘e)ET - (ax ‘D ‘D ‘g ‘e)gT - (2 - gXx) * IdW

f((ox ‘2 ‘D ‘g ‘e)pT + (Ox ‘D ‘D ‘g ‘e)ET - (OX ‘D ‘D ‘g ‘e)gT - (2x ‘D ‘D ‘gq ‘e)IT

(X -2) *+ - (22X -2) xT¥ - (2 ‘O ‘D‘q‘e)er - (2 Ox ‘D ‘q ‘e)T - (2X - 2) *x Id W
((g-2)*-(9-2)=*«T¥-(2°qD ‘g e)pT = z+ (2°qd‘q‘e)er - (2 ‘q‘d‘q‘e)gT - (2 ‘g ‘D> ‘q ‘e)Ir
(g -9x)*=g-(0q-2)%TH- (39X gD q‘e)pT x "z+ (9x ‘g d‘q‘e)er - (2x ‘q ‘D ‘q ‘e)zr - (2x ‘q ‘> ‘q ‘e)IT
‘((e-qg)=*1¥-(q‘eD‘q‘e)pT+(q‘e’d’qg‘e)zr- (q‘e'd‘qe)Ir

(W IdW) /

'z = §) 21anop 3suod
'z = @ 214Nop 3su0d
'Z =) 214nop 3suod
'z = £ 914N0p 15U0D
) = €) 914N0p 35U0d
J = za@ 91anop 1s5U0d
) =) 91anop 35U0d
) = 1) 21Gnop 3s5U0d
‘T = D 91gqnop 3suod

* K K == — —

)
7))
7))

T)

* Ok K ¥

*(Q@ * AVHdIY - Zvl13a)utse = gy 919gnop 1suod
*(ZQ * XVHdTY - Zvl13a)utse = Ty 919gnop 1suod
‘(29 + 22) / T = AVHdIV 219nop 3suod

‘(ze+ 72) / 'T = XVHdIV 919nop 1suod

(P -w) /L kw k= Za 919nop 1suod
‘(- w) /(23 + zw) = Zyllda 91gnop 1suod

f(zq + ze)yubs = ox @1qnop

‘(72 + ze)aibs = gx a1qnop
‘(70 + 7q)ydbs = ex ajqgnop
{(zw)3abs = w 31gqnop

‘20 + zq + ze = zw 21qnop
{2 x 2 = > a21qnop
‘q % q = zq a19nop
‘e x e = ze a1qnop

e1NWJ0) ,SJ911BM UT zy ‘ease 3sabue) // ‘M %] = D 21qnop

49

distribution is unlimited.

]

Approved for public release;

£SS3)ONS LIX3 udniad soc

{ C

4@) pue 4qd J03dey adeys // L1pudi:ipis >> 4pd >> 3\, >> IS * 4pd >> .3\, >> JS >> 1n0d €0T
Joloe) adeys SS9|UOTSUBWTP 0} eaJe pajudsadd JJ8AUOD // 4gS * X = 4S 0T

{ 10C

{ 00C

‘w/ 'y« (BX - X)+ G+ v¥Q+ €Q+ 2A+ 1) = IP2 661

‘w/ "y = 4pd 861

J 9sed // } (w=>Xxm89 X =>e8x) JT 3519 161

{ 961

“C(x ‘gx > ‘g ‘e)ET - (OX - X) x Id W * G'T) *) *x "Z + ¥ + €0 + 2@ + 1D = 4pd s6l

(€ - IdW*GT) *xD* "= 4pd 61

9 9sed // } (BX > X M9 X =>(QgX) JT 3S]® €61

{ 6l

YO (x ox D ‘q ‘e)ET - (X ‘OX ‘D ‘gq ‘B)ZT - (OX - X) x IdW) * D * ‘T + €4 + 2d + 1D = 4p2 161
(€4 -7 - IdW) *xD * 'z =4pd 061

pased // } (gGX > XNy X =>0X) JT 9519 681

{ 881

“C(x 2 ' ‘g ‘e)pT + (X DD ‘q ‘e)ET - (X ‘D ‘D ‘g ‘e)gT - (X ‘D ‘D ‘q ‘e)IT) *x D * "T+gd+ 1D = 4pd L81
(€4 - b+ T - T4) xDx "7 =4pd 981

D> ased // } (22X >XxXR89 X =>0D2) JT as)® G81

{ 81

C(a-x)*x-(9-%x)*T-(x'q‘D‘q‘e)pr *x z+ (X ‘q‘D‘Q‘e)er - (x ‘q‘d‘q‘e)zr- (X ‘gD ‘qQ‘e)IT* Z)*DI+T1)=4p> €81
DI - TN - vdox T HEN - T - T4 x T) x D = 4pd [

qesed // } (2 >X83X=>q) 4T 3s)® 181

{ 081

(e -x)xTIM- (x‘e’D‘q‘e)pT + (X ‘®D‘q‘e)gr - (x ‘e D‘q‘e)IT) *)=4pd 6LI
(T - v+ T - T4) x D = 4pd SLI

e 9sed // }(a>xmex=e)41 LL1

9LI

70 <79 + ge :9sed // } es19 SLT

{ LI

{ €L1

W/ oy ok (BX - X) 4+ 6)+ D)+ €D+ 7D+ T = 4Pd TLl

‘w/ cy = 4pd IL1

4 9sed // } (w=>X®9y X =>8ex) 4T 9s1d LT

{ 691

“C(x‘gx ‘> ‘g ‘e J)ET - (GX - X) x IdW * G'T) * D *x "+ ¥D + €) + 7D + 1D = 4pd 891

(€4 - IdW * G'T) *D* 'Z=4pd L91

9 9sed // } (BX > X WY X =>(QX) JT 9519 91

{ 91

fC(x D' ‘g ‘e)ET - (X DD)ZT - (2 -X)*xIdW) *DI* "T+E +7)+1D=4pd o1
‘(€ -7 -IdW) *2* 'z=4pd €91

p 8sed> // }(ax > XxR89 X =>03) 4T 3519 [

{ 191

TOOX - X) - (OX - X) kT - (X OX ‘D g ‘e)ET - (X ‘DX ‘D ‘g ‘e)ZT - (OX - X)k IdW * ‘T) *xDJ+ 2+ 1) =4pd 091
(DI - T - € -2 - IdW* ') *D=4pd 661

>9sed // } (2 >XW®Y X =>0X) JT 8S]® 8ST

{ LST

((g-x)*2-(9-x)*xT¥-(X‘qQ‘D‘q‘e)pT x 'z+ (X ‘qQ‘D‘q‘®)eT - (x ‘g d‘qQ‘e)gT - (X ‘q‘D‘q‘®)IT * ") * I+ 1I)=4pd> 9ST
DTN -vd ok T+ ES - T - Tdx T) %D = 4pd Sy

50

distribution is unlimited.

1

Approved for public release

A-3. Cylinder

Consider a right-circular cylinder (RCC) with length L and diameter D. Let ¢, be
the yaw angle measured from the axis of symmetry so that ¢, = 0 corresponds to a
face-forward orientation of the cylinder. Then the shape factor as a function of yaw

angle is

L\ ? /L
o= (15) (Femactfleosal) | @)

where 0 < ¢, < 7. The minimum shape factor is

T L —2/3 L x
i in (=2 A-4
Yo (40) mm(D 4) (A-40)

and is realized at the yaw angle

7/2 if L/D<x/4
= . (A-41)
0 if L/D>n/4

The maximum shape factor is

r L\ %3 L\? N 2
Yonax = (15> \/ (5) +(%) (A-42)

¢, = tan™* (—) : (A-43)

and is realized at
The mean shape factor when averaged over all random orientations is

o ms L\ /L1
7= (3) (5) (5*5)- (A4

Some plots of Eqs. A-39, A-42, and A-44 as a function of L/D are shown in
Fig. A-3.

3Saucier R. Shape factor of a randomly oriented cylinder. Aberdeen Proving Ground (MD): Army
Research Laboratory (US); 2000 Jul. Report No.: ARL-TR-2269.

Approved for public release; distribution is unlimited.

51

4 T T T T
3l i
5 i Maximum
£ ol / 60 deg
;} I] Mean
° | — 45deg
r 7 — 30deg
O I 1 1 1 1
0 2 4 6 8 10

L/D

Fig. A-3. Shape factors of a cylinder as a function of L/D at a fixed yaw angle from Eq. A-39
are displayed at 30°, 45°, and 60°. The maximum shape factor as a function of L/ D is from
Eq. A-42, and the average shape factor of a randomly oriented cylinder as a function of L/D
is from Eq. A-44.

.. . . —1/3
The minimum of the maximum shape factor curve is (Ymax)min = V3 (%) ARN

1.49 and occurs when L/D = /2 (%) ~ 1.11072. The minimum of the mean shape

factor curve is Jiin = 2 () /3 ~ 1.38395 and occurs when L/D=1.

In Eq. A-39, let z = (L/D)~'/3; then it can be written as

™

S (Z)_l/g CO;b T4 (%) “ang, = 0. (A-45)
Y

Square Eq. A-42 and let z = (L/D)~%/3; then it can be written as

-2/3 -2
r® — (%) 2T+ (2) = 0. (A-46)

And in Eq. A-44, let z = (L/D)~'/3; then it can be written as

3 T\ 3
22 <Z) 42 =0, (A-47)

So we see that these 3 equations all have the same form:

2+ pr+qg=0, (A-48)

Approved for public release; distribution is unlimited.

52

where

L —-1/3 -1/3 -1
.x:(5> ,p:_G) 7 ,q:(5> tan ¢, in Eq. A-45;

COS @ 4
L\ 23 T\ "2/3 ™ 2.
e I = (5) s P=— <Z) Tmax> 4 = <Z> m Eq A_46’
L —-1/3 -1/3
o o — (5> p=—2 (%) 5,q = 2in Eq. A-47.

A-3.1. Diversion: Solution to Cubic Equation in the Case of Real Roots

Without loss of generality, the general cubic can be written as
2® +az® + br + ¢ = 0. (A-49)
Setting © = y — a/3 eliminates the quadratic term and puts it in the form
v +py+a=0, (A-50)

with
p= —% and g=c— 2+ (A-51)

We note in passing that the absence of the quadratic term implies that the roots must

sum to zero. For if y;, y2, and y3 are the roots of Eq. A-50, then

(y—y1)(y—y2)(y—ys) = yg_(yl +y2+y3)y2+(?le2+yly3+y2?}3)y—yly2y3 =0,
(A-52)

and eliminating the »? term means that y; + ¥ + y3 = 0.

A useful trick* for solving the cubic without the quadratic term (Eq. A-50) is to make

use of the trigonometric identity

4cos® 0 — 3cosf — cos(30) =0 |, (A-53)

which can be easily derived by using the double angle formulas in the expansion of

cos(30). Let us return then to Eq. A-48 to see if we can transform it into this form.

4Hubbard JH, Hubbard BB. Vector calculus, linear algebra, and differential forms: a unified
approach. Upper Saddle River (NJ): Prentice Hall; 2001.

Approved for public release; distribution is unlimited.

53

Begin by setting
x = tcosd, (A-54)

which gives
t3cos® O + ptcosh + q = 0, (A-55)

or, multiplying through by 4/t3,

4 4
4cosh + t—f cos 6 + t_g =0. (A-56)
Choosing
4p
=4/ =—= A-57
5 ()
then gives
3 3q 3
4cos’d —3cosd — —,/—— =0. (A-58)
p 4p

Now we see that if we choose 6 such that

cos(360) = %\ / —4%?, (A-59)

then the cubic is automatically satisfied, guaranteed by the trigonometric identity
Eq. A-53. Therefore,

3 3
30 = cos™* (Eq —%) + 27k where k=0,+1, (A-60)

and from Eqgs. A-54 and A-57, the solutions for x are

[4 1 / 2
Ty = _P cos [= cos™! @ —3 + k—ﬂ for k=0, +1. (A-61)
3 3 P 4p 3

It is easy enough to check that the 3 solutions do indeed sum to zero as promised,

since

2 2
cos 8 + cos (0 + ?ﬁ) + cos (0 — %) =0 (A-62)

for arbitrary 6. Two of the solutions will be positive, corresponding to a disk-like and
a rod-like cylinder, and the third solution will be negative, which is of no physical

interest.

Approved for public release; distribution is unlimited.

54

The solutions for L/D are

L L

5 =% % for disk-like cylinders and D= o7 for rod-like cylinders in Eq. A-45;
L 5 o . L 3p : - -)

* 5 =% for disk-like cylinders and D=N for rod-like cylinders in Eq. A-46;
L _3 . . . L _3 . . .

° D= x, " for disk-like cylinders and D= 21 ” for rod-like cylinders in Eq. A-47.

A-3.2. Cylinder Probability Distributions

There are 2 cases to consider: rod-like with % > % and disk-like with % < %.

L\ 3 N ANEAR
For the following formulas, define a = () —and b = () .

4D D 4D 4
e L/D > w/4:
The PDF is given by
b /A2 A2
CWQ \/M if b<vy<a
YmaxV Ymax — 7
f() = (A-63)

2ary

e if @ <7< Ymax
max max

2

and the CDF is given by

b /~2 A2
1 — ’y+a' Vmax 8 if b§’y<a

2
Ymax

F(y) = (A-64)
1 2a V ﬂygnax - 72

2
Tmax

if <7< Ymax

e L/D < w/4:
The PDF is given by

b /2 A2
a’y + ’-Ymax ,-)/ lf a S 7 < b
Ve axV Voax — V2
fly) =) (A-65)
“ i b << Yo
rygnax ’Yglax -7

2

Approved for public release; distribution is unlimited.

55

and the CDF is given by

b’)/ —a V 7r2nax - 72 if

5 a<~vy<b
,ymaX
F(y) = (A-66)
2a V 7r2naX - 72 .
11— 72 lf b S 7 S Ymax

These functions are plotted in Fig. A-4 for the case when L/D = 1.

7 1.0 T T
6
£ 5 ¢
5 2
§° g
- s
Z 4 > 06
2 @
5 <
o a
> 3
£ > 041
el =
) K
82 g
o a 0.2
1
ol ——— e 0.0 . . .
0.9 1.0 1.1 1.2 1.3 1.4 1.5 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Shape Factor Shape Factor

Fig. A-4. Plot of shape factor PDF and CDF for a randomly oriented cylinder with L/D = 1.
Notice the discontinuity at v = (7/4) ~2/3 where the shape factor changes from being single-
valued to being multivalued.

Equations A-64 and A-66 can be solved for v for a given value of F'—and in
this way turn this into a direct and fast method for computing the shape factor
probability distribution of a random tumbling cylinder. The resulting algorithm has

been implemented into the C++ code in Listing A-3.

Listing A-3. algo.cpp

// algo.cpp: fast algorithm for generating the shape factor of an RCC with a uniform random orientation over the unit
sphere
// R. Saucier, Feb 2016 (see p. 12 of ARL-TR-2269 for derivation of this algorithm)

#include <iostream>
#include <cmath>
#include <chrono>
#include <random>
using namespace std;

int main(int argc, char* argv[]) {

double 1.d = 1.;

if (argc == 2) 1.d = atof(argv[l]); // L/D =1 is default or override with 1st arg
int N = 1000;
if (argc == 3) N = atoi(argv[2]); // 1000 samples is default or override with 2nd arg

const double C
const double A
const double B
const double G_MAX2
const double G_MAX
const double K
const double P1

pow(M_PI_4 x 1d, -2. / 3.);
C* 1.d;

C * M_PI_4;

A x A+ B * B;

sqrt(G_MAX2);

G_MAX / (2. x A);

1. - 2. * A * B / G_MAX2;

Approved for public release; distribution is unlimited.

56

const double P2 =(B-A)x*(B+A) / GMAX2;

unsigned seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
std::mt19937 rng(seed); // Mersenne Twister engine
std::uniform_real_distribution<double> u(0., 1.); // bind uniform distribution

double p, q, r, g;

for (int i =0; i < N; i++) {

p=u(rng);
a=1 -p;
r=gq *K;

if (A>=B) { // same as L/D >= PI/4
if (p<=Pl)g=Bxq+A*xsqrt(px (1. +q));
else g=GMAX * sqrt((1 -r) = (1. +r));

}

else { // same as L/D < PI/4
if (p<=P2)g B*p+Ax*xsqrt(gx* (1. +p));
else g =GMAX * sqrt((1. - r) x (1. +r));

¥

std::cout << g << std::endl;

}
return EXIT_SUCCESS;
}

This code generates over 28 million shape factors per second on a Mac with a
2.4-GHz Intel Xeon processor. Running the code for an L./ D = 1 cylinder gives the

results shown in Fig. A-5.

! ! ! ! ! ! T T T T T M
12 B 1.0
c
c 10 4 S
] S 08
3]
e S
[
C 8f] =
> =}
o = 0.6
g 2
53 - 4 =4
8 6 B
> o
: g 04
g 4] £
9 3
o E 02
2f 1 3
0 ‘ﬂ | 0.0 t =
1.0 1.1 1.2 1.3 1.4 15 1.0 1.1 12 13 1.4 1.5
Shape Factor Shape Factor

Fig. A-5. Histograms of shape factor PDF and CDF for a randomly oriented L/D = 1 cylin-
der compared to plots from analytical formulas, Eqs. A-65 and A-66. Notice the jump in the
PDF at v = (7/4)~2/3 ~ 1.175, as predicted (compare to Fig. A-4).

Approved for public release; distribution is unlimited.

57

A-4. Tetrahedron

Consider a regular tetrahedron of unit side length, which has a volume of %(\%)3 Its

presented area ranges from \/ig to % The PDF as a function of area is given by!

12 ., [/84%2-1 8v3 ., (3—2042 8 .1 1
5 3 —_— | - — if —< A< —
7o (1—4142)7L % \371642 3 VBT
16 1 V3
fA) =46+ — if —=<A<="=
\/g \@7 -4
V3 1
— << < —
6 if 1 _A_2
(A-67)

Since presented area, A, and dimensionless shape factor, ~, are related by
A=qV23 (A-68)

where V' is the volume, we can get the PDF as a function of v by simply scaling the
area by =2/ = 2. 3%/3,

The CDF as a function of area is given by

12 ., [/8A%2-1 8v/3 1 [3—2042 8

?Asm (1—4A2) + - Acos™! (3—16A2> fﬁAJr

6 [t (V2034 (V20+34)

™| V1— 642 V1— 642

6 [, o1 ((V2(2-3v34) it (Y22 43V34)

™| V1—6A2 V1 - 6A2

67 _

F(A) =47 tan 1(3 - 2v/2) — tan 1(3—1—2\/5)] -

g [tan—l(znf— 3v/3) +tan—1(4\/§+3¢§)} if ig <A< i6

(6 + \1/63) A+ g [tan_l(?) —2V2) —tan"' (3 + 2\/5)} -

61 _ L1 V3

- [tan 1(4v/2 — 3v/3) + tan 1(4\/54—3\/3)] if 7 <A< -

6A —2 if ? <A< %
(A69)

The C++ code in Listing A-4 implements the PDF and CDF, Egs. A-67 and A-69.

Approved for public release; distribution is unlimited.

58

T2 oo uou bW —

Listing A-4. tetrahedron.cpp

// tetrahedron.cpp: generates plotting points for tetrahedron pdf and cdf

// Ref: Vickers, G. T. and Brown, D. J.,

// "The distribution of projected area and perimeter of convex, solid particles,"
// Proc. R. Soc. Lond. A (2001), Vol. 457, pp. 283-306.

#include <iostream>
#include <cmath>

#include <cstdlib>
#include <cassert>

const double CUBE_VOLUME = 1. / (M_SQRT2 x M_SQRT2 % M_SQRT2); // volume of cube that encloses the tetrahedron
with unit side length

const double TETRAHEDRON_VOLUME = CUBE_VOLUME / 3.; // volume of tetrahedron with unit side length

const double FACTOR = pow(TETRAHEDRON_VOLUME, -2. / 3.); // factor that converts presented area to
dimensionless shape factor

const double SQRT3 = sqrt(3.);

const double SQRT6 = M_SQRT2 * SQRT3;

const double SQRT8 = sqrt(8.);

const double AMIN = 1. / SQRT8;

const double AMAX =1./ 2.;

double pdf(double x) {
assert(AMIN <= x && x <= AMAX);

if (x < 1. / SQRT6) {
double x2 = x * X;
return (12. / MPI) * asin((8. * x2 - 1.) / (1. - 4. * x2)) +
(8. * SQRT3 / M.PI) = acos((3. - 20. * x2) / (3. - 16. * x2)) - 8. / SQRT3;

}
else if (x < SQRT3 / 4.)
return 6. + 16. / SQRT3;
else
return 6.;

}
double cdf(double x) {
assert(AMIN <= x && x <= AMAX);
if ((x < 1./ SQRT6) {
double x2 = x * Xx;
double x4 = x2 * x2;

return
(-2. = (4. = SQRT3 * M_PI * x - 12. = SQRT3 * x *x acos((3. - 20. * x2) / (3. - 16. *x x2)) +

18. * x * asin((1. - 8. * x2) / (1. - 4. x x2)) -
9. % atan(3. - 2. * M_SQRT2) +
9. % atan(3. + 2. * M_SQRT2) +
9. * atan(4. x M_SQRT2 - 3. * SQRT3) +
9. * atan(4. x M_SQRT2 + 3. * SQRT3) -
9. % atan((M_SQRT2 * (1. - 3. * x)) / sqrt(1. - 6. * x2)) -
9. x atan((M.SQRT2 = (1. + 3. * x)) / sqrt(1. - 6. * x2)) -
9. * atan((M_SQRT2 * (-2. + 3. * SQRT3 * x) * sqrt(x2 - 6. * x4)) / (x *x (-1. + 6. * x2))) +
9. * atan((M_SQRT2 % (2. + 3. = SQRT3 * x) * sqrt(x2 - 6. * x4))/(x * (-1. +6. *x2)))))/ (3. %
M_PI);
else if (SQRT3 / 4.) {

X <
return (6. + 16. / SQRT3) * x +
(6. % (atan(3. - 2. * M_SQRT2) -
atan(3. + 2. * M_SQRT2) -
atan(4. * M_SQRT2 - 3. * SQRT3) -
atan(4. * M_SQRT2 + 3. = SQRT3))) / M_PI;
}
else
return 6. * x - 2.;

}

int main(int argc, char*x argv) { // specify number of points on commandline or use 1000

int N = 1000;
if (argc == 2) N = atoi(argv[1l]);

for (double a = AMIN; a <= AMAX; a += (AMAX - AMIN) / double(N)) {
double g = FACTOR * a;
std::cout << g << "\t"
<< pdf(a) / FACTOR << "\t"
<< cdf(a) << std::endl;

}
return EXIT_SUCCESS;

Approved for public release; distribution is unlimited.

59

This is plotted in Fig. A-6.

0.8

o
T

0.6

&
T

Probability Density Function

0.2

Cumulative Distribution Function

I I I I I I S Y S S T S R
1.5 1.6 1.7 1.8 1.9 2.0 1.5 1.6 1.7 1.8 19 2.0

Shape Factor Shape Factor

Fig. A-6. Plot of shape factor PDF and CDF for a randomly oriented regular tetrahedron

A-5. Ellipsoid

The equation of an ellipsoid, in which its principal axes are aligned with the coordi-

nate axes, is given by

1’2 2 22
?+?J_+§:17 (A-70)

where a, b, and c are the 3 semi-principal axes, and its volume is

4
V= gwabc. (A-71)

Let the viewing angle be specified by the polar angle # and the azimuthal angle ¢.

The presented area of the ellipsoid will be in the shape of an ellipse of area’

A= 7r\/ b2c2 sin? 0 cos? ¢ + a2c? sin? sin® ¢ + a2b? cos? 6. (A-72)

Let the dimensions be ordered so that a < b < ¢. The CDF as a function of area is
given by!

1—73%577[RF<0,£—1,£—77)— ;RJ(o,é—l,g—n,f)} if Amin <7 < Ap

Fle) = 2ot (43— A2, /(48— AZ,) if 2 = A,

2 1
1-— %\/577 [RF(O,l —¢1—n)— gRJ(O,l -1 —77,1)} if Ap <2< Apax
(A-73)

Vickers GT. The projected areas of ellipsoids and cylinders. Powder Technology. 1996; 86:
195-200.

Approved for public release; distribution is unlimited.

60

where

A?nax —a? A%ﬂax —a?
£= 2 a2 "T o —az Amin = mab, Am =mac, Amax =7mbe, (A-74)
max m max min

and the functions R and R ; are the Carlson symmetrized form of the classic elliptic

integrals: 1 [dt
1 A-75
RF(ZE,y,Z> 2/0 \/(t+x>(t+y)(t+2) (:
d
" Ry(z,y,2):§/) : o
I Y, 2,0) = 5 o t+p)/E+a)t+y)t+z)

It is shown in Numerical Recipes® that the PDF as a function of area is given by

2
- Amin

2% R0, (A2 — 22)(A2
s

max

), (4]

max x2)(Ar2n - A?mn)) if Apin <z <Ay
f(z) =
IQ - A?nin)(AIQnax - Arzn)) if Am <z < Amax

(A-77)

max min)a (

Q—xRF(O, (x? — A2)(A2,, — A2
Y

There is a logarithmic singularity in f at z = A, when a, b, and c are all different.
The total surface area of the ellipsoid is given by

2mbe 1 1 1 2mabe (1 1 1 1 1 1 1 1
o 2
S = 2ma” + a RF(aQ’bQ’CQ)_ 3 <a2_02) <a2_b2>RJ(02’b2’a27a2>’

(A-78)

and from this we can get the mean presented area as S/4 from Cauchy’s theorem.

The presented areas in these formulas are easily converted to dimensionless shape
factors, -, via the relationship
A=V, (A-79)

where V is the ellipsoid volume. To convert the PDF from a function of area to a

function of shape factor, use

_dF dFdA

—_— = / -
I =05 =qag =V 1@ (A-80)

The formulas in Egs. A-77 and A-74 are plotted in Fig. A-7.

®Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C: the art of
scientific computing. New York (NY): Cambridge University Press; 1995.

Approved for public release; distribution is unlimited.

61

©C N AW~

37

0.30
1.0
0.25 5
s 5 0.8
3 S
c w
5 020 <
2 = 0.6
7
S 0.15 2
o 2
2 S 04
% 0.10 =
©
g 2
o 0.2
0.05 3
0.001 00" v v e
0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 0.8 1.0 1.2 1.4 1.6 1.8 2.0 22
Shape Factor Shape Factor

Fig. A-7. Plot of shape factor PDF and CDF for an ellipsoid witha = 1, b = 2, ¢ = 3. There
is a logarithmic singularity in the PDF when a, b, and c are all different and is located at
~ = (4/3)~2/3(wac/b?)'/3, which in this case is at 371/3 /4 ~ 1.098.

Listings A-5 through A-8 can be used for printing out the solid curves in Fig. A-7.

Listing A-5. ellipsoid.cpp

// ellipsoid.cpp: Prints out the PDF and CDF as a function of shape factor for an ellipsoid
// Specify the dimension of the ellipsoid on the commandline (or use default 3/2/1)
// R. Saucier, Feb 2016

#include <iostream>
#include <cstdlib>
#include <cmath>

double rf(double x, double y, double z);
double rj(double x, double y, double z, double p);

inline double min(double a, double b, double c) { return std::min(std::min(a, b), c); }
inline double max(double a, double b, double c) { return std::max(std::max(a, b), c); }
inline double mid(double a, double b, double ¢) { return std::max(std::min(a, b), std::min(std::max(a, b), c));

}
class PDF { // functor for probability density function
public:
PDF(double amin, double am, double amax) : _amin(amin), _am(am), _amax(amax) {}
double operator()(double x) {
double y, z;
if (_amin <= x & x <= _am) {
y=(_am - x) % (_am + X) * (_amax - _amin) x (_amax + _amin);
z=(_amax - x) * (_amax + x) * (_am - _amin) * (_am + _amin);
}
else {
y=(x - _am) * (x + _am) x (_amax - _amin) x (_amax + _amin);
z=(x - _amin) % (x + _amin) * (_amax - _am) * (_amax + _am);
}
return (x / MPI_2) x rf(0, y, z);
}
private:
double _amin, _am, _amax;
Y
class CDF { // functor for cumulative distribution function
public:
CDF(double amin, double am, double amax) : _amin(amin), _am(am), _amax(amax) {}
double operator()(double x) {
if (x == _am)

return asin(sqrt((_am - _amin) x (_am + _amin) / ((_amax - _amin) * (_amax + _amin)))) / M_PI_2;

double y, z, p, xi, eta;

if (_amin <= x && x <= _am) {
xi = (_amax - x) % (_amax + x) / ((_amax - _am) * (_amax + _am))
eta = (_amax - x) * (_amax + x) / ((-amax - _amin) * (_amax + _amin));
y =xi - 1.;
z =xi - eta;
p = xi;

}

else {
xi = (_amax - x) * (_amax + x) / ((_amax - _am) * (_amax + _am));
eta = (_amax - x) * (_amax + x) / ((_amax - _amin) * (_amax + _amin));
y = 1. - xi;
z =1. - eta;

Approved for public release; distribution is unlimited.

62

C NN R W~

p =1
}
return 1. - (sqrt(xi * eta) / MPI_2) x (rf(0O,y, z) -rj(0,y, z,p) /3.);
}
private:
double _amin, _am, _amax;
Y
int main(int argc, charx argv[]) {
double a =1., b =2., c = 3.;
if (argc == 4) { // or specify the 3 dimensions (in any order) on the command line
a = atof(argv[1l]);
b = atof(argv([2]);
c = atof(argv[3]);
}
const double A = min(a, b, c); // minimum value
const double B = mid(a, b, ¢); // intermediate value
const double C = max(a, b, c); // maximum value
const double V= (4. / 3.) x MPI *x A x B x C; // ellipsoid volume
const double S1 = pow(V, +2. / 3.); // factor to convert PDF from area to shape factor
const double S2 = pow(V, -2. / 3.); // factor to convert area to shape factor
const double AMIN = M_PI * A * B;
const double AM = M_PI * A x C;
const double AMAX = M_PI * B * C;
PDF pdf(AMIN, AM, AMAX);
CDF cdf(AMIN, AM, AMAX);
const int N = 1000;
for (double x = AMIN; x <= AMAX; x += (AMAX - AMIN) / double(N))
std::cout << S2 * x << "\t" << S1 #* pdf(x) << "\t" << cdf(x) << std::endl;
return EXIT_SUCCESS;
}
Listing A-6. rf.cpp
// rf.cpp: Computes Carlson’s elliptic integral of the first kind, Rf(x,y,z),
// where x, y, and z must be nonnegative and at most one can be zero. TINY
// must be at least 5 times the machine underflow limit and BIG at most
// one fifth the machine overflow limit.
// Ref: Press, W.H., Teukolsky, S.A., Vetterling, W, T., Flannery, B.P.,
// Numerical Recipes in C, Cambridge University Press, 1992.

#include <cmath>
#include <cstdlib>
#include <iostream>

inline double FMIN3(double a,
inline double FMAX3(double a,

// at least 2(DBL_MIN)~(1/3), where DBL_MIN = 2.22507e-308
// at most (1/5)(DBL_MAX)~(1/3), where DBL_MAX = 1.79769e+308

double rf(double x, double y, double z) {

const double ERRTOL = 0.08;

const double TINY = 5.7e-103;
const double BIG = 1.1e+102;
const double THIRD = 1. / 3.;
const double C1 =1. / 24.;
const double C2 =0.1;

const double C3 =3. / 44.;
const double C4 1. / 14.;

double b, double ¢) { return std::min(std::min(a, b), c); }
double b, double c) { return std::max(std::max(a, b), c); }

double alamb, ave, delx, dely, delz, e2, e3, sqrtx, sqrty, sqrtz, xt, yt, zt;

if (FMIN3(x, y, z) < 0.0 |[]

FMIN3(x +y, x + z, y + z) < TINY ||

FMAX3(x, y, z) > BIG) {
std::cerr <<

std::cerr << " X =
<< " y ="
<< " z="
exit(EXIT_FAILURE);
}
xt = x;
yt =vy;
zt = z;
do {
sqrtx = sqrt(xt);
sqrty = sqrt(yt);
sqrtz = sqrt(zt);
alamb =

xt = 0.25 * (xt + alamb);

"invalid arguments in
" << x << std::endl
<< y << std::endl
<< z << std::endl;

rf: " << std

Approved for public release; distribution is unlimited.

::endl;

sqrtx * (sqrty + sqrtz) + sqrty = sqrtz;

63

47

49

51
52
53

55
56
57

©C 0N U AW —

yt = 0.25 * (yt + alamb);
zt = 0.25 * (zt + alamb);
ave = THIRD * (xt + yt + zt);
delx = (ave - xt) / ave;
dely = (ave - yt) / ave;
delz = (ave - zt) / ave;
} while(FMAX3(fabs(delx), fabs(dely), fabs(delz)) > ERRTOL);
e2 = delx * dely - delz * delz;
e3 = delx * dely x delz;
return (1. + (Cl1 x e2 - C2 - C3 x e3) xe2 + C4 x e3) / sqrt(ave);

Listing A-7. rj.cpp
// rj.cpp: Computes Carlson’s elliptic integral of the third kind, Rj(x,y,z,p),
// where x, y, and z must be nonnegative and at most one can be zero. p
// must be nonzero. If p < 0, the Cauchy principal value is returned. TINY
// must be at least twice the cube root of the machine underflow limit and
// BIG at most one fifth the cube root of the machine overflow limit.
// Ref: Press, W.H., Teukolsky, S.A., Vetterling, W, T., Flannery, B.P.,
// Numerical Recipes in C, Cambridge University Press, 1992.

#include <cmath>
#include <cstdlib>
#include <iostream>

double rc(double x, double y);
double rf(double x, double y, double z);

inline double FMIN3(double a, double double ¢) { return std::min(

b, imin(a, b), c); }
inline double FMAX3(double a, double b, double c) { return std::max(

b,

b,

max(a, b), ¢); }
min(FMIN3(a, b, ¢), d); }
r:max(FMAX3(a, b, ¢), d); }

inline double FMIN4(double a, double double c, double d) { return
inline double FMAX4(double a, double double c, double d) { return
inline double SQR(double a) { return a x a; }

double rj(double x, double y, double z, double p) {

const double ERRTOL =
const double TINY =
const double BIG =
const double C1 =3./ 14.;
const double C2 =1./ 3.

0.05;
5
1
3
1
const double C3 =3./22.;
3
0
1
0
C

.7e-103; // at least 2(DBL_MIN)~(1/3), where DBL_MIN = 2.22507e-308
.1le+102; // at most (1/5)(DBL_MAX)"(1/3), where DBL_MAX = 1.79769e+308

const double C4 =3./ 26.;
const double C5 = 0.75 * C3;
const double C6 = 1.5 % C4;
const double C7 = 0.5 x C2;
const double C8 3 + (C3;

double a = 0., alamb, alpha, ans, ave, b = 0., beta, delp, delx, dely, delz, ea, eb, ec,
ed, ee, fac, pt, rcx = 0., rho, sqrtx, sqrty, sqrtz, sum, tau, xt, yt, zt;

if (FMIN3(x, y, z) < 0.0 ||
FMINA(x +y, x +z, y + z, fabs(p)) < TINY ||
FMAX4(x, y, z, fabs(p)) > BIG) {

std::cerr << "invalid arguments in rj: " << std::endl;
std::cerr << " X =" << x << std::endl
<< " y = " <<y << std::endl
<" z z << std::endl
<< " p = p << std::endl
<< " TINY = " << TINY << std::endl
<< " BIG = " << BIG << std::endl;
exit(EXIT_FAILURE);
}
sum = 0.;
fac = 1.;
if (p>0.){
xt = x;
yt =y;
zt = z;
pt = p;
}
else {

xt = FMIN3(x, y, z);

zt = FMAX3(x, vy, z);
yt=x+y+ 2z - xt - zt;
a=1./(yt -p);

b=a=x* (zt-yt) x (yt-xt);
pt = yt + b;

rho = xt * zt / yt;

tau = p * pt / yt;

rcx = rc(rho, tau);

Approved for public release; distribution is unlimited.

70
71
2
73
74
75
76
77
8
9

81
82
83

85
86
87
88
89

91
92
93

95
96
97
98

100
101
102

T IR I N O

do {
sqrtx = sqrt(xt);
sqrty = sqrt(yt);
sqrtz = sqrt(zt);
alamb = sqrtx * (sqrty + sqrtz) + sqrty * sqrtz;
alpha = SQR(pt * (sqrtx + sqrty + sqrtz) + sqrtx * sqrty = sqrtz);
beta = pt * SQR(pt + alamb);
sum += fac * rc(alpha, beta);

fac *= 0.25;

xt = 0.25 * (xt + alamb);

yt = 0.25 * (yt + alamb);

zt = 0.25 * (zt + alamb);

pt = 0.25 * (pt + alamb);

ave = 0.2 * (xt + yt + zt + pt + pt);

delx = (ave - xt) / ave;

dely = (ave - yt) / ave;

delz = (ave - zt) / ave;

delp = (ave - pt) / ave;
} while(FMAX4(fabs(delx), fabs(dely), fabs(delz), fabs(delp)) > ERRTOL);
ea = delx * (dely + delz) + dely * delz;

eb = delx * dely x delz;

ec = delp * delp;

ed = ea - 3. x ec;

ee = eb + 2. * delp * (ea - ec);

ans = 3. x sum +
fac * (1. +ed x (-CL + C5 * ed - C6 x ee) +
eb x (C7 + delp * (-C8 + delp x C4)) +
delp * ea * (C2 - delp * C3) -
C2 * delp * ec) / (ave * sqrt(ave));
if (p<=0.)ans =a* (b x*xans + 3. x (rex - rf(xt, yt, zt)));
return ans;

Listing A-8. rc.cpp
// rc.cpp: Computes Carlson’s degenerate elliptic integral, Rc(x,y), where x must
// be nonnegative and y must be nonzero. If y < 0, the Cauchy principal
// value is returned. TINY must be at least 5 times the machine underflow
// limit and BIG must be at most one fifth the machine overflow limit.
// Ref: Press, W.H., Teukolsky, S.A., Vetterling, W, T., Flannery, B.P.,
// Numerical Recipes in C, Cambridge University Press, 1992.

#include <cmath>

#include <cstdlib>

#include <iostream>

double rc(double x, double y) {

const double ERRTOL = 0.04;

const double TINY = 5.7e-103; // at least 2(DBL_MIN)”~(1/3), where DBL_MIN = 2.22507e-308
const double BIG = 1.1e+102; // at most (1/5)(DBL_MAX)"(1/3), where DBL_MAX = 1.79769e+308
const double SQRTNY = sqrt(TINY);

const double TNBG = TINY x BIG;

const double COMP1 = 2.236 / SQRTNY;
const double COMP2 = TNBG * TNBG / 25.;
const double THIRD = 1. / 3.;

const double C1 =0.3;
const double C2 =1./7.;
const double C3 = 0.375;
const double C4 =9./22.;

double alamb, ave, s, w, xt, yt;

if (x<0.0 || y==0.0]]|

x + fabs(y)) < TINY ||

x + fabs(y)) > BIG ||

y < -COMP1 && x > 0.0 && x < COMP2)) {

std::cerr << "invalid arguments in rc: " << std::endl
<< " X = " << X << std::endl
<< " y = " <<y << std::endl;
exit(EXIT_FAILURE);
}
if (y>0.) {
xt = x;
yt =y;
w=1.;
}
else {
xt =x -vy;
yt = -y;
w = sqrt(x) / sqrt(xt);
}
do {

Approved for public release; distribution is unlimited.

65

49
51
52
53

55

alamb = 2. * sqrt(xt) * sqrt(yt) + yt;
xt = 0.25 * (xt + alamb);
yt = 0.25 * (yt + alamb);
ave = THIRD * (xt + yt + yt);
s =(yt - ave) / ave;
} while (fabs(s) > ERRTOL);
returnw * (1. +sxs* (Cl+sx* (C2+sx* (C3+s=xC4))))/ sqrt(ave);

Approved for public release; distribution is unlimited.

66

Appendix B. Uniform Sampling over the Unit Sphere

Approved for public release; distribution is unlimited.

67

The global version of Archimedes’ theorem! states that the area of a sphere is equal
to the area of a cylinder circumscribed about the sphere, excluding the bases. The area
of a unit sphere is 47. The area of the circumscribed cylinder is the circumference
times the height: 2 x 2 = 47. The local version of the theorem states further that
any region on the sphere is equal to the axial projection on the cylinder. This is a
very powerful theorem for our purposes since it is much easier to define a sampling
strategy on the cylinder, which we can lay out flat and independently sample ¢ and

z, and then use Archimedes’ theorem to map onto the unit sphere.

Let 6 and ¢ be the polar and azimuthal angles, respectively, on the unit sphere, and let
¢ and z be coordinates on the circumscribed cylinder, where 6 € [0, 7|, ¢ € [0, 27],
and z € [—1, 1]. Then the mapping from the cylinder to the sphere [0, 27] x [—1, 1]
= S52(0, ¢) is simply

0 =cos'z (B-1)

while the ¢ value remains the same. Now that we know the mapping from the
cylinder to the sphere, we focus on the sampling strategy on the unwrapped cylinder,

the aspect ratio of which is depicted in Fig. B-1.

+1

—1

0) 2T

Fig. B-1. Sampling on the [0, 27] X [—1, 1] circumscribed cylinder allows us to sample both
¢ and z uniformly and independently over their entire range

We describe 4 sampling strategies, 2 randomized and 2 deterministic.

'Shao M, Badler N. Spherical sampling by Archimedes’ theorem. Philadelphia (PA): University
of Pennsylvania: 1996; Technical Report MS-CIS-96-02.

Approved for public release; distribution is unlimited.

68

® NN R W —

P e Y N N N

B-1. Uniform Random

The first is independent uniform random sampling” on both ¢ ~ U(0,27) and
z ~ U(—1,1). The C++ code is given in Listing B-1.

Listing B-1. uniform.cpp

// uniform.cpp: generate a uniform random distribution over the unit sphere

#include "Random.h"
#include <iostream>
#include <cstdlib>
#include <cmath>

#include <iomanip>

int main(int argc, charx argv[]) {

000;

unsigned int 5
= atoi(argv[1l]);

N=1
if (argc == 2) N

std::cout << std::setprecision(6) << std::fixed;

rng::Random rng;
double th, ph, x, y, z;
for (unsigned int n = 0; n < N; n++) {

X = rng.uniform(0., 2. * M_PI);

z = rng.uniform(-1., 1);

//std::cout << x << "\t" << z << std::endl;

ph = x;

th = acos(z);

//std::cout << ph << "\t" << th << std::endl;

x = sin(th) * cos(ph);

y = sin(th) * sin(ph);

std::cout << x << "\t" <<y << "\t" << z << std::endl;

}
return EXIT_SUCCESS;

This is the simplest strategy, and it has the advantage that we do not need to know
the total number of sample points beforehand; we can simply continue until we meet
some convergence criterion. The biggest disadvantage is that it produces a pattern

that contains clustering of points and is not very uniform, as we see in Fig. B-2.

B-2. Stratified Random

We can improve upon the clustering problem that we see with uniform sampling by
using stratified random sampling. This can be achieved by imposing a grid on the
cylinder and drawing a random sample within each grid cell. The C++ code is given

in Listing B-2.

Listing B-2. strat.cpp

// strat.cpp: Stratified uniform spherical sampling based upon Archimedes’ Theorem;

// works by subdividing the [0,2 pi] x [-1,1] cylinder into N”2 rectangles,

// randomly selects a point from each, and then maps onto the unit sphere.

// Reference: Min-Zhi Shao and Norman Badler, "Spherical Sampling by Archimedes’ Theorem,"
// http://repository.upenn.edu/cis_reports/184/, 25 June 2007.

#include "Random.h"

2Saucier R. Computer generation of statistical distributions. Aberdeen Proving Ground (MD):
Army Research Laboratory (US); 2000 Mar. Report No.: ARL-TR-2168.

Approved for public release; distribution is unlimited.

69

#include <iostream>
#include <cstdlib>
#include <cmath>

int main(int argc, charx argv[]) { // override default N on commandline

int N = 32; // number of points is N*2, so default is 3272 = 1024
if (argc == 2) N = atoi(argv[1l]);

* M_PI / double(N);

const double DEL X =
= / double(N);

2
const double DEL_Z = 2.
rng::Random rng;

double x, y, phl, ph2, z, z1, z2, ph, th;
for (int i =1; i <= N; i++) {

22 i % DEL_Z;
z1 z2 - DEL_Z;
for (int j = 1; j <= N; j++) {

ph2 = j * DEL_X;
phl = ph2 - DEL_X;

ph = rng.uniform(phl, ph2);
z = rng.uniform(z1, z2) - 1.;

//std::icout << ph << "\t" << z << std::endl;

th = acos(z);

//std::cout << ph << "\t" << th << std::endl;

x = sin(th) * cos(ph);

y = sin(th) * sin(ph);

std::cout << x << "\t" <<y << "\t" << z << std::endl;

}

}
return EXIT_SUCCESS;
}

This does a lot to remove the clustering as shown in Fig. B-3, but the disadvantage is
that we need to know the total number of sample points beforehand to impose the
grid. There is another issue with this stratified sampling: to get uniform sampling, the
grid cells must be rectangles rather than squares. This results in a different density

of points along the 2 dimensions.

B-3. Spiral Distribution

A good discussion of the general problem of distributing points uniformly over
the unit sphere is contained in the paper by Saff and Kuijlaars.> They show that
a distribution of points on the sphere spiraling from the north pole to south pole
provides a good compromise that keeps the spacing between points about the same.
Their formulation is implemented in Listing B-3. This is not randomized, and we
need to know beforehand the total number of sample points. The pattern it produces

is shown in Fig. B-4.

3Saff EB, Kuijlaars AB. Distributing many points on a sphere. The Mathematical Intelligencer.
1997;19:5A1.

Approved for public release; distribution is unlimited.

70

[e N N

[I e N N N

Listing B-3. spiral.cpp

// spiral.cpp: uniform spiral distribution over the unit sphere
// Implementation of the spiral distribution on the unit sphere as described in the paper:
// Saff and Kuijlaars, "Distributing Many Points on a Sphere," The Mathematical Intelligencer, Vol. 19 (1967) pp. 5-11.

#include <iostream>

#include <cstdlib>

#include <cmath>

using namespace std;

int main(int argc, charx argv[]) {

const double TWO_PI = 2. % M_PI;

int N = 1000;
if (argc == 2) N = atoi(argv[1]);

double x, y, z, th, ph = 0.;
for (int i =1; i <= N; i++) {

if (i==1){
7 =

-1.;

ph = 0.;
else if (1 =N) {

Z= .3

ph = 0.;
}
else {

z=-1. +2. %« (1i-1) / double(N -1);

ph += 3.6 / sqrt(double(N) * (1. -z) * (1. +2z));
}

th = acos(z);
while (ph > TWO_PI) ph -= TWO_PI;

//cout << ph << "\t" << z << endl;

//cout << ph << "\t" << th << endl;

X = sin(th) * cos(ph);

y = sin(th) * sin(ph);

cout << x << "\t" <<y << "\t" << z << endl;
}
return EXIT_SUCCESS;

We call this the spiral distribution since it starts at the north pole and spirals points

around the sphere until it reaches the south pole.

B-4. Maximal Avoidance

The last method we consider is based upon number theory. The code listing is in

Listing B-4 and is based upon the code in Numerical Recipes.*

Listing B-4. avoidance.cpp

// avoidance.cpp: use maximal avoidance to generate a uniform distribution over the unit sphere

#include "Random.h"
#include "Vector.h"
#include <iostream>
#include <cstdlib>
#include <cmath>

#include <iomanip>

va::Vector spherical(rng::Random& rng) { // returns a random unit vector uniformly distributed over the unit sphere

double x, y, z;
rng.spherical_avoidance(x, y, z);
return va::Vector(x, y, z);

“Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C: the art of
scientific computing. New York (NY): Cambridge University Press; 1995.

Approved for public release; distribution is unlimited.

71

int main(int argc, charx argv[]) {

024;

unsigned int g
= atoi(argv[1l]);

N = 1
if (argc =2) N

std::cout << std::setprecision(6) << std::fixed;

rng::Random rng;

for (unsigned int n = 0; n < N; n++) std::cout << spherical(rng) << std::endl;
/*

double th, ph, xy[2];

for (unsigned int n = 0; n < N; n++) {

//rng.avoidance(xy, 2);
//std::cout << xy[0] * 2. * M_PI << "\t" << xy[1l] * 2. - 1. << std::endl;
rng.spherical_avoidance(th, ph);
std::cout << ph << "\t" << th << std::endl;
}
*/
return EXIT_SUCCESS;

This is also deterministic, not random, and one requires to know the number of
sample points ahead of time. However, it does a very nice job of distributing the
points, as shown in Fig. B-5. The points are computed sequentially, and number

theory is used to avoid previous points.

Approved for public release; distribution is unlimited.

72

Fig. B-2. Using uniform sampling on the cylinder with € [0, 27] and z € [—1, 1] (top plot)
and Archimedes’ theorem to map onto the sphere with ¢ = z and @ = cos™! z

Approved for public release; distribution is unlimited.

73

and z € [—1, 1] (top plot)

thx € [0, 27]

theorem to map onto the sphere with ¢ = x and 6

.
1

the cylinder w

tratified sampling on
b

Fig. B-3. Using s
and Archime

=cos 1z

des

Approved for public release; distribution is unlimited.

74

.

. ° .
S0 00 e e 000000 000,

® e oo M

.

.

® e % s 000 00 0 o440
® % % o6 00 0 00 0 0 g0 0000 00 .
.
L T T T
.
D R I A A
® e % o s s e e e 4 o
e * ¢ 4 s e e e
® * & & e e o
A A A SR SR B e o o e o 4 4 e o e ¢ o o .
« e e o e
. . .
. |
. A . .
. .
.
.
.

Fig. B-4. Using the spiral distribution on the cylinder with € [0,27] and z € [—1, 1] (top
plot) and Archimedes’ theorem to map onto the sphere with = x and @ = cos™" z

Approved for public release; distribution is unlimited.

75

Fig. B-5. Using maximal avoidance on the cylinder with € [0, 27| and z € [—1, 1] (top plot)
and Archimedes’ theorem to map onto the sphere with ¢ = z and @ = cos™! z

Approved for public release; distribution is unlimited.

76

Appendix C. Some Properties of the Lognormal Distribution

Approved for public release; distribution is unlimited.

77

The probability density function (PDF) is

(C-1

falo?) = — .

exp |—
V21 ox p[202

and the cumulative distribution function (CDF) is

F(z|p,0?) = % (1 terf {mj_T;“D , (C-2)

where 1 is the location parameter and o is the scale parameter. Expressions for the

usual metrics are listed in Table C-1.

Table C-1. Properties of the lognormal distribution

Statistic Expression
Geometric Mean Ty =et
Geometric Standard Deviation o4 =¢€7
Median T50 = eM
Mean T = ento’/2
Mode i =en—o

e The values az and Z/a are equally likely for any value a # 0. That is,
flaz) = f(2/a).
e 68% of the distribution is contained in the interval [0, ", z,0,].

-2 2}‘

® 95% of the distribution is contained in the interval [z 0%, 7407

The n-th moment about the origin is

An = /Ooo " f(z)dx
= /00 e f(x)dw

0
1 o Inx — p)?
= / exp {—M—f—nlnm} dlnz
0

2mo 202

1 e Inz — u — no?)? 1
— / exp |:_<H.T 1% nJ) +n#+§n20_2:| dlnz
0

2mo 202

1
= exp (nu + §n202)

1
= T, exp (571202) (C-3)

Approved for public release; distribution is unlimited.

78

The n-th moment distribution function of f(x | i, 0?) is defined by

1
falz|p,0%) = PRAars o?). (C-4)

Using Egs. C-3 and C-1,

1 1 Inz — u)?
fn(z|p,0?) = exp <—nu - n202) exp [_(nxu) + nlnx}

2 V2mox 202
1 1 lnz — pu—no?)? 1
= exp (—nu — 2n202> o exp [—(;(72 o) +nu+ 2n202]
1 (lnm—u—n02)2]
= exp | — . C-5
2rox [202)

And thus we have derived the Fundamental Theorem of the Moment Distribution:

The n-th moment distribution of a lognormal distribution with parameters z and o

is also a lognormal distribution with parameters . + no? and o2, respectively,

fal@|p,0%) = f(z|p+no’, o). (C-6)

We can also show that the product and quotient of lognormal distributions are also
lognormal. Using the notation of Aitchison and Brown!, if X; ~ A(u1,0}) and

Xy ~ A(puz,02), then the product X; X, is also lognormal with

X1 Xy ~ Ay + po, 07 + 03), (C-7)
and the quotient X /X is also lognormal with

X1/ Xy ~ Ay — pg, 03 + 03). (C-8)

We can derive these results as follows.

!Aitchison J, Brown JAC. The lognormal distribution. New York (NY): Cambridge University
Press; 1963.

Approved for public release; distribution is unlimited.

79

C-1. Product of Lognormals

Let X; ~ A(u1,0?) and Xy ~ A(ug,03) be lognormal distributions. Then the

cumulative distribution of their product is

00 u/ 1
FX1X2<U) = //f(l'l,l'g) dl’l dlL’Q == A (A f(JZl,lEQ) dlL‘Q) dl’l. (C-9)

X1 Xo<u

The density is obtained by differentiating with respect to u, so that

- /Ooo fla)f (%) dinz

/°° 1 . [(lnm—,ul)z}
— - eX —
o V2moix P L 202 V2 og(u/x)

2
2075

1 © T (Inz—u)? (nu—Inz—pm)?
_ / oxp (Inz —p)* (Inu—Inz —pp) } dlnz
0

T 27o109u 20% B 20%
B 1 o0 [((nz - p1)? (Inz + ps —Inw)?
N 2770102u/0 P | (202 * 202 dinz
_ 1 /ij oxp | — (z —m)? n (7 + po — Inw)? da
T 2moy0qu oo P 20% 20%
=g [ewlegl) d
T 2moi09u oo exp [~g()] dz,
where
(z =) | (@+pe —Inu)? 2 2
)= + =a(x — +b(z + o —)7,
and) .
a=-=, b=-=, c=hu
207 205

Completing the square in = gives, after some messy algebra,

e — (1 + p2)]”

_apy — bus + be 2 ab
a+b a+b

o) = (a 1) o

Approved for public release; distribution is unlimited.

80

1 em{(MW@—mP

} dlnzx

(C-10)

(C-11)

(C-12)

(C-13)

or, in terms of o, 09, and In u,

of + 03 o3 —otps+oflmu)’ | (Inu—p — po)®
9(r) = D=~ (- 5 - L (C-14)
20105 o1 + 03 2(01 + 03)
Therefore, returning to Eq. C-10,
o [g o)
fX1X2 (u) =€xXp 2(0_% T J%)
1 e _U%—&—J% _a%,ul—ofug—i—cr%lnu 2
2mo102u /_OO P 20202 v o? + o3 de (15

The integral is now easily evaluated with the substitution

_ Vol tas o2 — 0%y + 0w e
¢= z - s and d¢ = Y192 g (C-16)
\@0'102 o1 + 03 \/50_10_2
and we get

(Inu — py — po)?

fxux, (u) =e [1 ! /oo ¢ d§
1X2 =X -
o Pl 20+) | Vot otudw

_ 1 exp [_ (Inw—pm — M2)2}
2m(0% + 03) u 2(0f + 03)
=A(p1 + po, 07 4 03). (C-17)
Thus,
X1 Xy ~ Ay + pig, 03 + 03) (C-18)

as was to be shown.

C-2. Quotient of Lognormals

Let X7 ~ A(u1,0?) and Xy ~ A(us,03) be lognormal distributions. Then the

cumulative distribution of their quotient is

FX1/X2(U’) = // f(l’l,l’g) dl’l d(L’Q = /OOO (/Oux2 f(l‘l,l’g) dJTl) dQTQ. (C-19)

Xi1/X2<u

Approved for public release; distribution is unlimited.

81

The density is obtained by differentiating with respect to u, so that

Ix1/x, (w) :/0 [(ura, x2) 2 dro

= /OOO fluz)f(z) xdx

/OO L o[(n(uz) - m)g} 1 [(Inz — M2)2] v da
o V2moix P i 202 V21 ooz P 202

_ 1 /ooexp_ (Inu+Inz —p)? (11135#2)2} dinz
0

T 27o109u 20% 20%
1 > [((nz —p; +Inu)® (Inz — po)?
_ _ dl
271'0102u/0 P I (203 + 202 ne
e[(e o)),
T 27o109u oo P 20% 20%
[eon) (20
= X —_ -
2moioou J_ o CXP T} AL

W) = (x = +Inu)? (z—p)

— 2 2
207 207 a(x — py +¢)° +b(x — p2)?, (C-21)

Lo,
2027 7 20%

a c=lInu. (C-22)

Completing the square in = gives

e — (m —p2)]> (C-23)

apy + bus — ac 2 ab
a+b a+b

h(z) = (a+b) (:c

or, in terms of o1, 09, and In u,

2
h(z) = of + 03 (x_ O3+ OF pia —Uglnu) 1 [Inw— (p —M2)]2_ (C-24)

2 2 2 2 2 2
20103 o1 + 05 2(0% + 03)

Approved for public release; distribution is unlimited.

82

Therefore, returning to Eq. C-20,

[Inw— (u1 — po)]?
203 +03) } g

1 oo
e — / exp
2royo9u J_ o

The integral is now easily evaluated with the substitution

sz/X1 (U) =€exp {—

— C-25
20203 0%+ o3 ©2)

2
o? + o3 (x— Jgul—ka%ug—aglnu) 1 "

Voi+a3 o3 + otps — o3 Inu Vot +o3
€= T — 0 Lac and df = Y—=—=dx (C-26)
V20,09 o1 + 03 V2010
and we get

Inw— (py — pa)]?

f (u) =ex [— } ! /Oo e~ d¢
e/ P 2(07 + 03) V2702 +o3u -

- zw(afl oD {_ [lnu2(_a;/i ;§§LQ>]1

=A(p1 — po, 01 + 73). (C-27)

Thus,

X1/ Xy ~ Ay — po, 07 4 03) (C-28)

as was to be shown.

In general, if X;, ¢« = 1,2,...,n are independent random variables with X; ~

A(ju;,0?) and a and p; are constants, then?

aﬁxg’i ~ A(lna + Xn:piui,ipfaf) : (C-29)
=1 =1 =1

Notice that the variance can only increase, never decrease. The next section gives an

application of this result.

2Crow EL, Shimizu K, Editors. Lognormal distributions: theory and applications. New York
(NY): Marcel Dekker, Inc.; 1988.

Approved for public release; distribution is unlimited.

83

C-3. Mass per Unit Area Distribution

Suppose that the dimensionless shape factor «y is lognormally distributed with v ~
A(p1, 0%) and that fragment mass is also lognormally distributed with m ~ A(uz, 03).
Then, since the fragment presented area, A,, equals v(m/p)?/?, where p is the
material density, it follows from Eq. C-29 that mass per unit area is also lognormally
distributed:

m 1 2/3._1/3 2
—_— _p m ~J A M7 g s (C'30)
Ap g ()
where)
p=1np*3 — puy + % and o =o? + (%) . (C-31)

To illustrate this, let us return to the artillery fragments described in Section 3.2.
A lognormal distribution fits the fragment masses (in grams) with o = 1.690 and
oy = 1.323. We also found that the shape factor distribution was lognormal with
p1 = 0.597 and 07 = 0.341. From Egs. C-29, C-30, and C-31, it then follows that

the mass per unit area distribution (in g/cm?) should also be lognormal with

p=1n7.83%2—p1+ps/3=1.338 and o =y/0?+ (03/3)2 = 0.557. (C-32)

The program in Listing C-1 generates the shape factor and mass independently and

outputs the mass per unit area.

Listing C-1. mu.cpp

// mu.cpp: generate shape factor and mass independently
// and output mass per unit area to compare to the theoretical distribution

#include "Random.h"
#include <iostream>
#include <cstdlib>
#include <cmath>

int main(void) {

const int N = 10000;

const double MUl = 0.597, SIGMAL = 0.341, RHO = 7.83, C = pow(RHO, 2./3.);
const double MU2 = 1.690, SIGMA2 = 1.323;

rng::Random rng;

double sf, m, mu;

for (int i = 0; i < N; i++) {

sf = rng.lognormal(0., MUl, SIGMAl); // shape factor (dimensionless)
m = rng.lognormal(O., MU2, SIGMA2); // mass (grams)
mu = C *x pow(m, 1./3.) / sf; // mass per unit area (g/cm”2)

std::cout << mu << std::endl;

}
return EXIT_SUCCESS;

These values are compared to the theoretical distribution in Fig. C-1.

Approved for public release; distribution is unlimited.

84

08

0.6+

041

Probability Density Function
Cumulative Distribution Function

L A Ml 0.0 1 I I
0 5 10 15 20 25 0 5 10 15 20 25

Mass per unit Area (g/cm”2) Mass per unit Area (g/cm”2)

Fig. C-1. The program in Listing C-1 was used to generate independent samples of shape factor
and mass and output mass per unit area in order to compare to the theoretical distribution
(black curve)

This shows that the resulting distribution is indeed lognormal with ;o and o as given
by Eq. C-31. Thus, the mass per unit area samples could be generated from a single

lognormal distribution.

Approved for public release; distribution is unlimited.

85

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

86

List of Symbols, Abbreviations, and Acronyms

TERMS:
3D: 3 dimensional
FATEPEN: Fast Air Target Encounter Penetration
RCC: right-circular cylinder
RPP: rectangular parallelepiped (also known as cuboid)
STL: stereolithography
MATHEMATICAL SYMBOLS:
f, PDF: probability density function
F, CDF: cumulative distribution function
~: shape factor
p: material density

A, 0?): lognormal distribution with mean g and variance o>

Approved for public release; distribution is unlimited.

87

1 DEFENSE TECHNICAL
(PDF) INFORMATION CTR
DTIC OCA

2 DIRECTOR
(PDF) US ARMY RESEARCH LAB
RDRL CIO LL
IMAL HRA MAIL & RECORDS MGMT

1 GOVT PRINTG OFC
(PDF) A MALHOTRA

1 NVL SURFC WARFARE CTR
(HC) D DICKINSON G24
6138 NORC AVE STE 313
DAHLGREN VA 22448-5157

1 APPLIED RESEARCH ASSOCIATES
(HC) R ZERNOW
10720 BRADFORD RD STE 110
LITTLETON CO 80127-4298

ABERDEEN PROVING GROUND

7 RDRL SLB D
(PDF) J COLLINS
RDRL SLB G
D CARABETTA
J ABELL
T MALLORY
RDRL SLB S
J AUTEN
R DIBELKA
R SAUCIER (1 PDF, 1 HC)

Approved for public release; distribution is unlimited.

88

